
There's Plenty of Room at the Bottom 

An Invitation to Enter a New Field of Physics  

by Richard P. Feynman  

 

This transcript of the classic talk that Richard Feynman gave on December 29th 1959 at the annual meeting of the 
American Physical Society at the California Institute of Technology (Caltech) was first published in the February 1960 
issue of Caltech's Engineering and Science, which owns the copyright. It has been made available on the web at 
http://www.zyvex.com/nanotech/feynman.html with their kind permission.  

Information on the Feynman Prizes  

Links to pages on Feynman  

For an account of the talk and how people reacted to it, see chapter 4 of Nano! by Ed Regis, Little/Brown 1995. An 
excellent technical introduction to nanotechnology is Nanosystems: molecular machinery, manufacturing, and 
computation by K. Eric Drexler, Wiley 1992.  

 
 
I imagine experimental physicists must often look with envy at men like Kamerlingh Onnes, who discovered a field like 
low temperature, which seems to be bottomless and in which one can go down and down. Such a man is then a leader 
and has some temporary monopoly in a scientific adventure. Percy Bridgman, in designing a way to obtain higher 
pressures, opened up another new field and was able to move into it and to lead us all along. The development of ever 
higher vacuum was a continuing development of the same kind.  

I would like to describe a field, in which little has been done, but in which an enormous amount can be done in 
principle. This field is not quite the same as the others in that it will not tell us much of fundamental physics (in the 
sense of, ``What are the strange particles?'') but it is more like solid-state physics in the sense that it might tell us much 
of great interest about the strange phenomena that occur in complex situations. Furthermore, a point that is most 
important is that it would have an enormous number of technical applications.  

What I want to talk about is the problem of manipulating and controlling things on a small scale.  

As soon as I mention this, people tell me about miniaturization, and how far it has progressed today. They tell me about 
electric motors that are the size of the nail on your small finger. And there is a device on the market, they tell me, by 
which you can write the Lord's Prayer on the head of a pin. But that's nothing; that's the most primitive, halting step in 
the direction I intend to discuss. It is a staggeringly small world that is below. In the year 2000, when they look back at 
this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.  

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on the head of a pin?  

Let's see what would be involved. The head of a pin is a sixteenth of an inch across. If you magnify it by 25,000 
diameters, the area of the head of the pin is then equal to the area of all the pages of the Encyclopaedia Brittanica. 
Therefore, all it is necessary to do is to reduce in size all the writing in the Encyclopaedia by 25,000 times. Is that 
possible? The resolving power of the eye is about 1/120 of an inch---that is roughly the diameter of one of the little dots 
on the fine half-tone reproductions in the Encyclopaedia. This, when you demagnify it by 25,000 times, is still 80 
angstroms in diameter---32 atoms across, in an ordinary metal. In other words, one of those dots still would contain in 
its area 1,000 atoms. So, each dot can easily be adjusted in size as required by the photoengraving, and there is no 
question that there is enough room on the head of a pin to put all of the Encyclopaedia Brittanica.  
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Furthermore, it can be read if it is so written. Let's imagine that it is written in raised letters of metal; that is, where the 
black is in the Encyclopedia, we have raised letters of metal that are actually 1/25,000 of their ordinary size. How would 
we read it?  

If we had something written in such a way, we could read it using techniques in common use today. (They will 
undoubtedly find a better way when we do actually have it written, but to make my point conservatively I shall just take 
techniques we know today.) We would press the metal into a plastic material and make a mold of it, then peel the 
plastic off very carefully, evaporate silica into the plastic to get a very thin film, then shadow it by evaporating gold at 
an angle against the silica so that all the little letters will appear clearly, dissolve the plastic away from the silica film, 
and then look through it with an electron microscope!  

There is no question that if the thing were reduced by 25,000 times in the form of raised letters on the pin, it would be 
easy for us to read it today. Furthermore; there is no question that we would find it easy to make copies of the master; 
we would just need to press the same metal plate again into plastic and we would have another copy.  

How do we write small? 

The next question is: How do we write it? We have no standard technique to do this now. But let me argue that it is not 
as difficult as it first appears to be. We can reverse the lenses of the electron microscope in order to demagnify as well 
as magnify. A source of ions, sent through the microscope lenses in reverse, could be focused to a very small spot. We 
could write with that spot like we write in a TV cathode ray oscilloscope, by going across in lines, and having an 
adjustment which determines the amount of material which is going to be deposited as we scan in lines.  

This method might be very slow because of space charge limitations. There will be more rapid methods. We could first 
make, perhaps by some photo process, a screen which has holes in it in the form of the letters. Then we would strike an 
arc behind the holes and draw metallic ions through the holes; then we could again use our system of lenses and make a 
small image in the form of ions, which would deposit the metal on the pin.  

A simpler way might be this (though I am not sure it would work): We take light and, through an optical microscope 
running backwards, we focus it onto a very small photoelectric screen. Then electrons come away from the screen 
where the light is shining. These electrons are focused down in size by the electron microscope lenses to impinge 
directly upon the surface of the metal. Will such a beam etch away the metal if it is run long enough? I don't know. If it 
doesn't work for a metal surface, it must be possible to find some surface with which to coat the original pin so that, 
where the electrons bombard, a change is made which we could recognize later.  

There is no intensity problem in these devices---not what you are used to in magnification, where you have to take a 
few electrons and spread them over a bigger and bigger screen; it is just the opposite. The light which we get from a 
page is concentrated onto a very small area so it is very intense. The few electrons which come from the photoelectric 
screen are demagnified down to a very tiny area so that, again, they are very intense. I don't know why this hasn't been 
done yet!  

That's the Encyclopaedia Brittanica on the head of a pin, but let's consider all the books in the world. The Library of 
Congress has approximately 9 million volumes; the British Museum Library has 5 million volumes; there are also 5 
million volumes in the National Library in France. Undoubtedly there are duplications, so let us say that there are some 
24 million volumes of interest in the world.  

What would happen if I print all this down at the scale we have been discussing? How much space would it take? It 
would take, of course, the area of about a million pinheads because, instead of there being just the 24 volumes of the 
Encyclopaedia, there are 24 million volumes. The million pinheads can be put in a square of a thousand pins on a side, 
or an area of about 3 square yards. That is to say, the silica replica with the paper-thin backing of plastic, with which we 
have made the copies, with all this information, is on an area of approximately the size of 35 pages of the 
Encyclopaedia. That is about half as many pages as there are in this magazine. All of the information which all of 
mankind has every recorded in books can be carried around in a pamphlet in your hand---and not written in code, but a 
simple reproduction of the original pictures, engravings, and everything else on a small scale without loss of resolution.  
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What would our librarian at Caltech say, as she runs all over from one building to another, if I tell her that, ten years 
from now, all of the information that she is struggling to keep track of--- 120,000 volumes, stacked from the floor to the 
ceiling, drawers full of cards, storage rooms full of the older books---can be kept on just one library card! When the 
University of Brazil, for example, finds that their library is burned, we can send them a copy of every book in our 
library by striking off a copy from the master plate in a few hours and mailing it in an envelope no bigger or heavier 
than any other ordinary air mail letter.  

Now, the name of this talk is ``There is Plenty of Room at the Bottom''---not just ``There is Room at the Bottom.'' What 
I have demonstrated is that there is room---that you can decrease the size of things in a practical way. I now want to 
show that there is plenty of room. I will not now discuss how we are going to do it, but only what is possible in 
principle---in other words, what is possible according to the laws of physics. I am not inventing anti-gravity, which is 
possible someday only if the laws are not what we think. I am telling you what could be done if the laws are what we 
think; we are not doing it simply because we haven't yet gotten around to it.  

Information on a small scale 

Suppose that, instead of trying to reproduce the pictures and all the information directly in its present form, we write 
only the information content in a code of dots and dashes, or something like that, to represent the various letters. Each 
letter represents six or seven ``bits'' of information; that is, you need only about six or seven dots or dashes for each 
letter. Now, instead of writing everything, as I did before, on the surface of the head of a pin, I am going to use the 
interior of the material as well.  

Let us represent a dot by a small spot of one metal, the next dash, by an adjacent spot of another metal, and so on. 
Suppose, to be conservative, that a bit of information is going to require a little cube of atoms 5 times 5 times 5---that is 
125 atoms. Perhaps we need a hundred and some odd atoms to make sure that the information is not lost through 
diffusion, or through some other process.  

I have estimated how many letters there are in the Encyclopaedia, and I have assumed that each of my 24 million books 
is as big as an Encyclopaedia volume, and have calculated, then, how many bits of information there are (10^15). For 
each bit I allow 100 atoms. And it turns out that all of the information that man has carefully accumulated in all the 
books in the world can be written in this form in a cube of material one two-hundredth of an inch wide--- which is the 
barest piece of dust that can be made out by the human eye. So there is plenty of room at the bottom! Don't tell me 
about microfilm!  

This fact---that enormous amounts of information can be carried in an exceedingly small space---is, of course, well 
known to the biologists, and resolves the mystery which existed before we understood all this clearly, of how it could be 
that, in the tiniest cell, all of the information for the organization of a complex creature such as ourselves can be stored. 
All this information---whether we have brown eyes, or whether we think at all, or that in the embryo the jawbone 
should first develop with a little hole in the side so that later a nerve can grow through it---all this information is 
contained in a very tiny fraction of the cell in the form of long-chain DNA molecules in which approximately 50 atoms 
are used for one bit of information about the cell.  

Better electron microscopes 

If I have written in a code, with 5 times 5 times 5 atoms to a bit, the question is: How could I read it today? The electron 
microscope is not quite good enough, with the greatest care and effort, it can only resolve about 10 angstroms. I would 
like to try and impress upon you while I am talking about all of these things on a small scale, the importance of 
improving the electron microscope by a hundred times. It is not impossible; it is not against the laws of diffraction of 
the electron. The wave length of the electron in such a microscope is only 1/20 of an angstrom. So it should be possible 
to see the individual atoms. What good would it be to see individual atoms distinctly?  

We have friends in other fields---in biology, for instance. We physicists often look at them and say, ``You know the 
reason you fellows are making so little progress?'' (Actually I don't know any field where they are making more rapid 
progress than they are in biology today.) ``You should use more mathematics, like we do.'' They could answer us---but 
they're polite, so I'll answer for them: ``What you should do in order for us to make more rapid progress is to make the 
electron microscope 100 times better.''  
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What are the most central and fundamental problems of biology today? They are questions like: What is the sequence of 
bases in the DNA? What happens when you have a mutation? How is the base order in the DNA connected to the order 
of amino acids in the protein? What is the structure of the RNA; is it single-chain or double-chain, and how is it related 
in its order of bases to the DNA? What is the organization of the microsomes? How are proteins synthesized? Where 
does the RNA go? How does it sit? Where do the proteins sit? Where do the amino acids go in? In photosynthesis, 
where is the chlorophyll; how is it arranged; where are the carotenoids involved in this thing? What is the system of the 
conversion of light into chemical energy?  

It is very easy to answer many of these fundamental biological questions; you just look at the thing! You will see the 
order of bases in the chain; you will see the structure of the microsome. Unfortunately, the present microscope sees at a 
scale which is just a bit too crude. Make the microscope one hundred times more powerful, and many problems of 
biology would be made very much easier. I exaggerate, of course, but the biologists would surely be very thankful to 
you---and they would prefer that to the criticism that they should use more mathematics.  

The theory of chemical processes today is based on theoretical physics. In this sense, physics supplies the foundation of 
chemistry. But chemistry also has analysis. If you have a strange substance and you want to know what it is, you go 
through a long and complicated process of chemical analysis. You can analyze almost anything today, so I am a little 
late with my idea. But if the physicists wanted to, they could also dig under the chemists in the problem of chemical 
analysis. It would be very easy to make an analysis of any complicated chemical substance; all one would have to do 
would be to look at it and see where the atoms are. The only trouble is that the electron microscope is one hundred 
times too poor. (Later, I would like to ask the question: Can the physicists do something about the third problem of 
chemistry---namely, synthesis? Is there a physical way to synthesize any chemical substance?  

The reason the electron microscope is so poor is that the f- value of the lenses is only 1 part to 1,000; you don't have a 
big enough numerical aperture. And I know that there are theorems which prove that it is impossible, with axially 
symmetrical stationary field lenses, to produce an f-value any bigger than so and so; and therefore the resolving power 
at the present time is at its theoretical maximum. But in every theorem there are assumptions. Why must the field be 
symmetrical? I put this out as a challenge: Is there no way to make the electron microscope more powerful?  

The marvelous biological system 

The biological example of writing information on a small scale has inspired me to think of something that should be 
possible. Biology is not simply writing information; it is doing something about it. A biological system can be 
exceedingly small. Many of the cells are very tiny, but they are very active; they manufacture various substances; they 
walk around; they wiggle; and they do all kinds of marvelous things---all on a very small scale. Also, they store 
information. Consider the possibility that we too can make a thing very small which does what we want---that we can 
manufacture an object that maneuvers at that level!  

There may even be an economic point to this business of making things very small. Let me remind you of some of the 
problems of computing machines. In computers we have to store an enormous amount of information. The kind of 
writing that I was mentioning before, in which I had everything down as a distribution of metal, is permanent. Much 
more interesting to a computer is a way of writing, erasing, and writing something else. (This is usually because we 
don't want to waste the material on which we have just written. Yet if we could write it in a very small space, it wouldn't 
make any difference; it could just be thrown away after it was read. It doesn't cost very much for the material).  

Miniaturizing the computer 

I don't know how to do this on a small scale in a practical way, but I do know that computing machines are very large; 
they fill rooms. Why can't we make them very small, make them of little wires, little elements---and by little, I mean 
little. For instance, the wires should be 10 or 100 atoms in diameter, and the circuits should be a few thousand 
angstroms across. Everybody who has analyzed the logical theory of computers has come to the conclusion that the 
possibilities of computers are very interesting---if they could be made to be more complicated by several orders of 
magnitude. If they had millions of times as many elements, they could make judgments. They would have time to 
calculate what is the best way to make the calculation that they are about to make. They could select the method of 
analysis which, from their experience, is better than the one that we would give to them. And in many other ways, they 
would have new qualitative features.  
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If I look at your face I immediately recognize that I have seen it before. (Actually, my friends will say I have chosen an 
unfortunate example here for the subject of this illustration. At least I recognize that it is a man and not an apple.) Yet 
there is no machine which, with that speed, can take a picture of a face and say even that it is a man; and much less that 
it is the same man that you showed it before---unless it is exactly the same picture. If the face is changed; if I am closer 
to the face; if I am further from the face; if the light changes---I recognize it anyway. Now, this little computer I carry in 
my head is easily able to do that. The computers that we build are not able to do that. The number of elements in this 
bone box of mine are enormously greater than the number of elements in our ``wonderful'' computers. But our 
mechanical computers are too big; the elements in this box are microscopic. I want to make some that are 
submicroscopic.  

If we wanted to make a computer that had all these marvelous extra qualitative abilities, we would have to make it, 
perhaps, the size of the Pentagon. This has several disadvantages. First, it requires too much material; there may not be 
enough germanium in the world for all the transistors which would have to be put into this enormous thing. There is 
also the problem of heat generation and power consumption; TVA would be needed to run the computer. But an even 
more practical difficulty is that the computer would be limited to a certain speed. Because of its large size, there is finite 
time required to get the information from one place to another. The information cannot go any faster than the speed of 
light---so, ultimately, when our computers get faster and faster and more and more elaborate, we will have to make 
them smaller and smaller.  

But there is plenty of room to make them smaller. There is nothing that I can see in the physical laws that says the 
computer elements cannot be made enormously smaller than they are now. In fact, there may be certain advantages.  

Miniaturization by evaporation 

How can we make such a device? What kind of manufacturing processes would we use? One possibility we might 
consider, since we have talked about writing by putting atoms down in a certain arrangement, would be to evaporate the 
material, then evaporate the insulator next to it. Then, for the next layer, evaporate another position of a wire, another 
insulator, and so on. So, you simply evaporate until you have a block of stuff which has the elements--- coils and 
condensers, transistors and so on---of exceedingly fine dimensions.  

But I would like to discuss, just for amusement, that there are other possibilities. Why can't we manufacture these small 
computers somewhat like we manufacture the big ones? Why can't we drill holes, cut things, solder things, stamp things 
out, mold different shapes all at an infinitesimal level? What are the limitations as to how small a thing has to be before 
you can no longer mold it? How many times when you are working on something frustratingly tiny like your wife's 
wrist watch, have you said to yourself, ``If I could only train an ant to do this!'' What I would like to suggest is the 
possibility of training an ant to train a mite to do this. What are the possibilities of small but movable machines? They 
may or may not be useful, but they surely would be fun to make.  

Consider any machine---for example, an automobile---and ask about the problems of making an infinitesimal machine 
like it. Suppose, in the particular design of the automobile, we need a certain precision of the parts; we need an 
accuracy, let's suppose, of 4/10,000 of an inch. If things are more inaccurate than that in the shape of the cylinder and so 
on, it isn't going to work very well. If I make the thing too small, I have to worry about the size of the atoms; I can't 
make a circle of ``balls'' so to speak, if the circle is too small. So, if I make the error, corresponding to 4/10,000 of an 
inch, correspond to an error of 10 atoms, it turns out that I can reduce the dimensions of an automobile 4,000 times, 
approximately---so that it is 1 mm. across. Obviously, if you redesign the car so that it would work with a much larger 
tolerance, which is not at all impossible, then you could make a much smaller device.  

It is interesting to consider what the problems are in such small machines. Firstly, with parts stressed to the same 
degree, the forces go as the area you are reducing, so that things like weight and inertia are of relatively no importance. 
The strength of material, in other words, is very much greater in proportion. The stresses and expansion of the flywheel 
from centrifugal force, for example, would be the same proportion only if the rotational speed is increased in the same 
proportion as we decrease the size. On the other hand, the metals that we use have a grain structure, and this would be 
very annoying at small scale because the material is not homogeneous. Plastics and glass and things of this amorphous 
nature are very much more homogeneous, and so we would have to make our machines out of such materials.  

plenty.pdf   5plenty.pdf   5 19/07/2006   1.08.2019/07/2006   1.08.20



There are problems associated with the electrical part of the system---with the copper wires and the magnetic parts. The 
magnetic properties on a very small scale are not the same as on a large scale; there is the ``domain'' problem involved. 
A big magnet made of millions of domains can only be made on a small scale with one domain. The electrical 
equipment won't simply be scaled down; it has to be redesigned. But I can see no reason why it can't be redesigned to 
work again.  

Problems of lubrication 

Lubrication involves some interesting points. The effective viscosity of oil would be higher and higher in proportion as 
we went down (and if we increase the speed as much as we can). If we don't increase the speed so much, and change 
from oil to kerosene or some other fluid, the problem is not so bad. But actually we may not have to lubricate at all! We 
have a lot of extra force. Let the bearings run dry; they won't run hot because the heat escapes away from such a small 
device very, very rapidly.  

This rapid heat loss would prevent the gasoline from exploding, so an internal combustion engine is impossible. Other 
chemical reactions, liberating energy when cold, can be used. Probably an external supply of electrical power would be 
most convenient for such small machines.  

What would be the utility of such machines? Who knows? Of course, a small automobile would only be useful for the 
mites to drive around in, and I suppose our Christian interests don't go that far. However, we did note the possibility of 
the manufacture of small elements for computers in completely automatic factories, containing lathes and other machine 
tools at the very small level. The small lathe would not have to be exactly like our big lathe. I leave to your imagination 
the improvement of the design to take full advantage of the properties of things on a small scale, and in such a way that 
the fully automatic aspect would be easiest to manage.  

A friend of mine (Albert R. Hibbs) suggests a very interesting possibility for relatively small machines. He says that, 
although it is a very wild idea, it would be interesting in surgery if you could swallow the surgeon. You put the 
mechanical surgeon inside the blood vessel and it goes into the heart and ``looks'' around. (Of course the information 
has to be fed out.) It finds out which valve is the faulty one and takes a little knife and slices it out. Other small 
machines might be permanently incorporated in the body to assist some inadequately-functioning organ.  

Now comes the interesting question: How do we make such a tiny mechanism? I leave that to you. However, let me 
suggest one weird possibility. You know, in the atomic energy plants they have materials and machines that they can't 
handle directly because they have become radioactive. To unscrew nuts and put on bolts and so on, they have a set of 
master and slave hands, so that by operating a set of levers here, you control the ``hands'' there, and can turn them this 
way and that so you can handle things quite nicely.  

Most of these devices are actually made rather simply, in that there is a particular cable, like a marionette string, that 
goes directly from the controls to the ``hands.'' But, of course, things also have been made using servo motors, so that 
the connection between the one thing and the other is electrical rather than mechanical. When you turn the levers, they 
turn a servo motor, and it changes the electrical currents in the wires, which repositions a motor at the other end.  

Now, I want to build much the same device---a master-slave system which operates electrically. But I want the slaves to 
be made especially carefully by modern large-scale machinists so that they are one-fourth the scale of the ``hands'' that 
you ordinarily maneuver. So you have a scheme by which you can do things at one- quarter scale anyway---the little 
servo motors with little hands play with little nuts and bolts; they drill little holes; they are four times smaller. Aha! So I 
manufacture a quarter-size lathe; I manufacture quarter-size tools; and I make, at the one-quarter scale, still another set 
of hands again relatively one-quarter size! This is one-sixteenth size, from my point of view. And after I finish doing 
this I wire directly from my large-scale system, through transformers perhaps, to the one-sixteenth-size servo motors. 
Thus I can now manipulate the one-sixteenth size hands.  

Well, you get the principle from there on. It is rather a difficult program, but it is a possibility. You might say that one 
can go much farther in one step than from one to four. Of course, this has all to be designed very carefully and it is not 
necessary simply to make it like hands. If you thought of it very carefully, you could probably arrive at a much better 
system for doing such things.  
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If you work through a pantograph, even today, you can get much more than a factor of four in even one step. But you 
can't work directly through a pantograph which makes a smaller pantograph which then makes a smaller pantograph---
because of the looseness of the holes and the irregularities of construction. The end of the pantograph wiggles with a 
relatively greater irregularity than the irregularity with which you move your hands. In going down this scale, I would 
find the end of the pantograph on the end of the pantograph on the end of the pantograph shaking so badly that it wasn't 
doing anything sensible at all.  

At each stage, it is necessary to improve the precision of the apparatus. If, for instance, having made a small lathe with a 
pantograph, we find its lead screw irregular---more irregular than the large-scale one---we could lap the lead screw 
against breakable nuts that you can reverse in the usual way back and forth until this lead screw is, at its scale, as 
accurate as our original lead screws, at our scale.  

We can make flats by rubbing unflat surfaces in triplicates together---in three pairs---and the flats then become flatter 
than the thing you started with. Thus, it is not impossible to improve precision on a small scale by the correct 
operations. So, when we build this stuff, it is necessary at each step to improve the accuracy of the equipment by 
working for awhile down there, making accurate lead screws, Johansen blocks, and all the other materials which we use 
in accurate machine work at the higher level. We have to stop at each level and manufacture all the stuff to go to the 
next level---a very long and very difficult program. Perhaps you can figure a better way than that to get down to small 
scale more rapidly.  

Yet, after all this, you have just got one little baby lathe four thousand times smaller than usual. But we were thinking of 
making an enormous computer, which we were going to build by drilling holes on this lathe to make little washers for 
the computer. How many washers can you manufacture on this one lathe?  

A hundred tiny hands 

When I make my first set of slave ``hands'' at one-fourth scale, I am going to make ten sets. I make ten sets of ``hands,'' 
and I wire them to my original levers so they each do exactly the same thing at the same time in parallel. Now, when I 
am making my new devices one-quarter again as small, I let each one manufacture ten copies, so that I would have a 
hundred ``hands'' at the 1/16th size.  

Where am I going to put the million lathes that I am going to have? Why, there is nothing to it; the volume is much less 
than that of even one full-scale lathe. For instance, if I made a billion little lathes, each 1/4000 of the scale of a regular 
lathe, there are plenty of materials and space available because in the billion little ones there is less than 2 percent of the 
materials in one big lathe.  

It doesn't cost anything for materials, you see. So I want to build a billion tiny factories, models of each other, which are 
manufacturing simultaneously, drilling holes, stamping parts, and so on.  

As we go down in size, there are a number of interesting problems that arise. All things do not simply scale down in 
proportion. There is the problem that materials stick together by the molecular (Van der Waals) attractions. It would be 
like this: After you have made a part and you unscrew the nut from a bolt, it isn't going to fall down because the gravity 
isn't appreciable; it would even be hard to get it off the bolt. It would be like those old movies of a man with his hands 
full of molasses, trying to get rid of a glass of water. There will be several problems of this nature that we will have to 
be ready to design for.  

Rearranging the atoms 

But I am not afraid to consider the final question as to whether, ultimately---in the great future---we can arrange the 
atoms the way we want; the very atoms, all the way down! What would happen if we could arrange the atoms one by 
one the way we want them (within reason, of course; you can't put them so that they are chemically unstable, for 
example).  

Up to now, we have been content to dig in the ground to find minerals. We heat them and we do things on a large scale 
with them, and we hope to get a pure substance with just so much impurity, and so on. But we must always accept some 
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atomic arrangement that nature gives us. We haven't got anything, say, with a ``checkerboard'' arrangement, with the 
impurity atoms exactly arranged 1,000 angstroms apart, or in some other particular pattern.  

What could we do with layered structures with just the right layers? What would the properties of materials be if we 
could really arrange the atoms the way we want them? They would be very interesting to investigate theoretically. I 
can't see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of 
things on a small scale we will get an enormously greater range of possible properties that substances can have, and of 
different things that we can do.  

Consider, for example, a piece of material in which we make little coils and condensers (or their solid state analogs) 
1,000 or 10,000 angstroms in a circuit, one right next to the other, over a large area, with little antennas sticking out at 
the other end---a whole series of circuits. Is it possible, for example, to emit light from a whole set of antennas, like we 
emit radio waves from an organized set of antennas to beam the radio programs to Europe? The same thing would be to 
beam the light out in a definite direction with very high intensity. (Perhaps such a beam is not very useful technically or 
economically.)  

I have thought about some of the problems of building electric circuits on a small scale, and the problem of resistance is 
serious. If you build a corresponding circuit on a small scale, its natural frequency goes up, since the wave length goes 
down as the scale; but the skin depth only decreases with the square root of the scale ratio, and so resistive problems are 
of increasing difficulty. Possibly we can beat resistance through the use of superconductivity if the frequency is not too 
high, or by other tricks.  

Atoms in a small world 

When we get to the very, very small world---say circuits of seven atoms---we have a lot of new things that would 
happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large 
scale, for they satisfy the laws of quantum mechanics. So, as we go down and fiddle around with the atoms down there, 
we are working with different laws, and we can expect to do different things. We can manufacture in different ways. 
We can use, not just circuits, but some system involving the quantized energy levels, or the interactions of quantized 
spins, etc.  

Another thing we will notice is that, if we go down far enough, all of our devices can be mass produced so that they are 
absolutely perfect copies of one another. We cannot build two large machines so that the dimensions are exactly the 
same. But if your machine is only 100 atoms high, you only have to get it correct to one-half of one percent to make 
sure the other machine is exactly the same size---namely, 100 atoms high!  

At the atomic level, we have new kinds of forces and new kinds of possibilities, new kinds of effects. The problems of 
manufacture and reproduction of materials will be quite different. I am, as I said, inspired by the biological phenomena 
in which chemical forces are used in repetitious fashion to produce all kinds of weird effects (one of which is the 
author).  

The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. 
It is not an attempt to violate any laws; it is something, in principle, that can be done; but in practice, it has not been 
done because we are too big.  

Ultimately, we can do chemical synthesis. A chemist comes to us and says, ``Look, I want a molecule that has the atoms 
arranged thus and so; make me that molecule.'' The chemist does a mysterious thing when he wants to make a molecule. 
He sees that it has got that ring, so he mixes this and that, and he shakes it, and he fiddles around. And, at the end of a 
difficult process, he usually does succeed in synthesizing what he wants. By the time I get my devices working, so that 
we can do it by physics, he will have figured out how to synthesize absolutely anything, so that this will really be 
useless.  

But it is interesting that it would be, in principle, possible (I think) for a physicist to synthesize any chemical substance 
that the chemist writes down. Give the orders and the physicist synthesizes it. How? Put the atoms down where the 
chemist says, and so you make the substance. The problems of chemistry and biology can be greatly helped if our 
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ability to see what we are doing, and to do things on an atomic level, is ultimately developed---a development which I 
think cannot be avoided.  

Now, you might say, ``Who should do this and why should they do it?'' Well, I pointed out a few of the economic 
applications, but I know that the reason that you would do it might be just for fun. But have some fun! Let's have a 
competition between laboratories. Let one laboratory make a tiny motor which it sends to another lab which sends it 
back with a thing that fits inside the shaft of the first motor.  

High school competition 

Just for the fun of it, and in order to get kids interested in this field, I would propose that someone who has some 
contact with the high schools think of making some kind of high school competition. After all, we haven't even started 
in this field, and even the kids can write smaller than has ever been written before. They could have competition in high 
schools. The Los Angeles high school could send a pin to the Venice high school on which it says, ``How's this?'' They 
get the pin back, and in the dot of the ``i'' it says, ``Not so hot.''  

Perhaps this doesn't excite you to do it, and only economics will do so. Then I want to do something; but I can't do it at 
the present moment, because I haven't prepared the ground. It is my intention to offer a prize of $1,000 to the first guy 
who can take the information on the page of a book and put it on an area 1/25,000 smaller in linear scale in such manner 
that it can be read by an electron microscope.  

And I want to offer another prize---if I can figure out how to phrase it so that I don't get into a mess of arguments about 
definitions---of another $1,000 to the first guy who makes an operating electric motor---a rotating electric motor which 
can be controlled from the outside and, not counting the lead-in wires, is only 1/64 inch cube.  

I do not expect that such prizes will have to wait very long for claimants.  
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Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59, 433-460. 

COMPUTING MACHINERY AND INTELLIGENCE 
 

By A. M. Turing 

1. The Imitation Game 

I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the 
terms "machine" and "think." The definitions might be framed so as to reflect so far as possible the normal use of the 
words, but this attitude is dangerous, If the meaning of the words "machine" and "think" are to be found by examining 
how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, 
"Can machines think?" is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of 
attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in 
relatively unambiguous words. 

The new form of the problem can be described in terms of a game which we call the 'imitation game." It is played with 
three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a 
room apart front the other two. The object of the game for the interrogator is to determine which of the other two is the 
man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either "X is A and 
Y is B" or "X is B and Y is A." The interrogator is allowed to put questions to A and B thus: 

C: Will X please tell me the length of his or her hair? 

Now suppose X is actually A, then A must answer. It is A's object in the game to try and cause C to make the wrong 
identification. His answer might therefore be: 

"My hair is shingled, and the longest strands are about nine inches long." 

In order that tones of voice may not help the interrogator the answers should be written, or better still, typewritten. The 
ideal arrangement is to have a teleprinter communicating between the two rooms. Alternatively the question and 
answers can be repeated by an intermediary. The object of the game for the third player (B) is to help the interrogator. 
The best strategy for her is probably to give truthful answers. She can add such things as "I am the woman, don't listen 
to him!" to her answers, but it will avail nothing as the man can make similar remarks.  

We now ask the question, "What will happen when a machine takes the part of A in this game?" Will the interrogator 
decide wrongly as often when the game is played like this as he does when the game is played between a man and a 
woman? These questions replace our original, "Can machines think?"  

2. Critique of the New Problem 

As well as asking, "What is the answer to this new form of the question," one may ask, "Is this new question a worthy 
one to investigate?" This latter question we investigate without further ado, thereby cutting short an infinite regress. 

The new problem has the advantage of drawing a fairly sharp line between the physical and the intellectual capacities of 
a man. No engineer or chemist claims to be able to produce a material which is indistinguishable from the human skin. 
It is possible that at some time this might be done, but even supposing this invention available we should feel there was 
little point in trying to make a "thinking machine" more human by dressing it up in such artificial flesh. The form in 
which we have set the problem reflects this fact in the condition which prevents the interrogator from seeing or touching 
the other competitors, or hearing -their voices. Some other advantages of the proposed criterion may be shown up by 
specimen questions and answers. Thus: 

Q: Please write me a sonnet on the subject of the Forth Bridge. 

A : Count me out on this one. I never could write poetry. 
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Q: Add 34957 to 70764. 

A: (Pause about 30 seconds and then give as answer) 105621. 

Q: Do you play chess? 

A: Yes. 

Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1. It is your move. What do you play?  

A: (After a pause of 15 seconds) R-R8 mate. 

The question and answer method seems to be suitable for introducing almost any one of the fields of human endeavour 
that we wish to include. We do not wish to penalise the machine for its inability to shine in beauty competitions, nor to 
penalise a man for losing in a race against an aeroplane. The conditions of our game make these disabilities irrelevant. 
The "witnesses" can brag, if they consider it advisable, as much as they please about their charms, strength or heroism, 
but the interrogator cannot demand practical demonstrations. 

The game may perhaps be criticised on the ground that the odds are weighted too heavily against the machine. If the 
man were to try and pretend to be the machine he would clearly make a very poor showing. He would be given away at 
once by slowness and inaccuracy in arithmetic. May not machines carry out something which ought to be described as 
thinking but which is very different from what a man does? This objection is a very strong one, but at least we can say 
that if, nevertheless, a machine can be constructed to play the imitation game satisfactorily, we need not be troubled by 
this objection. 

It might be urged that when playing the "imitation game" the best strategy for the machine may possibly be something 
other than imitation of the behaviour of a man. This may be, but I think it is unlikely that there is any great effect of this 
kind. In any case there is no intention to investigate here the theory of the game, and it will be assumed that the best 
strategy is to try to provide answers that would naturally be given by a man. 

3. The Machines Concerned in the Game 

The question which we put in 1 will not be quite definite until we have specified what we mean by the word "machine." 
It is natural that we should wish to permit every kind of engineering technique to be used in our machines. We also wish 
to allow the possibility than an engineer or team of engineers may construct a machine which works, but whose manner 
of operation cannot be satisfactorily described by its constructors because they have applied a method which is largely 
experimental. Finally, we wish to exclude from the machines men born in the usual manner. It is difficult to frame the 
definitions so as to satisfy these three conditions. One might for instance insist that the team of engineers should be all 
of one sex, but this would not really be satisfactory, for it is probably possible to rear a complete individual from a 
single cell of the skin (say) of a man. To do so would be a feat of biological technique deserving of the very highest 
praise, but we would not be inclined to regard it as a case of "constructing a thinking machine." This prompts us to 
abandon the requirement that every kind of technique should be permitted. We are the more ready to do so in view of 
the fact that the present interest in "thinking machines" has been aroused by a particular kind of machine, usually called 
an "electronic computer" or "digital computer." Following this suggestion we only permit digital computers to take part 
in our game. 

This restriction appears at first sight to be a very drastic one. I shall attempt to show that it is not so in reality. To do this 
necessitates a short account of the nature and properties of these computers. 

It may also be said that this identification of machines with digital computers, like our criterion for "thinking," will only 
be unsatisfactory if (contrary to my belief), it turns out that digital computers are unable to give a good showing in the 
game. 

There are already a number of digital computers in working order, and it may be asked, "Why not try the experiment 
straight away? It would be easy to satisfy the conditions of the game. A number of interrogators could be used, and 
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statistics compiled to show how often the right identification was given." The short answer is that we are not asking 
whether all digital computers would do well in the game nor whether the computers at present available would do well, 
but whether there are imaginable computers which would do well. But this is only the short answer. We shall see this 
question in a different light later. 

4. Digital Computers 

The idea behind digital computers may be explained by saying that these machines are intended to carry out any 
operations which could be done by a human computer. The human computer is supposed to be following fixed rules; he 
has no authority to deviate from them in any detail. We may suppose that these rules are supplied in a book, which is 
altered whenever he is put on to a new job. He has also an unlimited supply of paper on which he does his calculations. 
He may also do his multiplications and additions on a "desk machine," but this is not important. 

If we use the above explanation as a definition we shall be in danger of circularity of argument. We avoid this by giving 
an outline. of the means by which the desired effect is achieved. A digital computer can usually be regarded as 
consisting of three parts: 

(i) Store. 

(ii) Executive unit. 

(iii) Control. 

The store is a store of information, and corresponds to the human computer's paper, whether this is the paper on which 
he does his calculations or that on which his book of rules is printed. In so far as the human computer does calculations 
in his bead a part of the store will correspond to his memory. 

The executive unit is the part which carries out the various individual operations involved in a calculation. What these 
individual operations are will vary from machine to machine. Usually fairly lengthy operations can be done such as 
"Multiply 3540675445 by 7076345687" but in some machines only very simple ones such as "Write down 0" are 
possible.  

We have mentioned that the "book of rules" supplied to the computer is replaced in the machine by a part of the store. It 
is then called the "table of instructions." It is the duty of the control to see that these instructions are obeyed correctly 
and in the right order. The control is so constructed that this necessarily happens. 

The information in the store is usually broken up into packets of moderately small size. In one machine, for instance, a 
packet might consist of ten decimal digits. Numbers are assigned to the parts of the store in which the various packets of 
information are stored, in some systematic manner. A typical instruction might say- 

"Add the number stored in position 6809 to that in 4302 and put the result back into the latter storage position."  

Needless to say it would not occur in the machine expressed in English. It would more likely be coded in a form such as 
6809430217. Here 17 says which of various possible operations is to be performed on the two numbers. In this case 
the)e operation is that described above, viz., "Add the number. . . ." It will be noticed that the instruction takes up 10 
digits and so forms one packet of information, very conveniently. The control will normally take the instructions to be 
obeyed in the order of the positions in which they are stored, but occasionally an instruction such as 

"Now obey the instruction stored in position 5606, and continue from there" 

may be encountered, or again 

"If position 4505 contains 0 obey next the instruction stored in 6707, otherwise continue straight on." 
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Instructions of these latter types are very important because they make it possible for a sequence of operations to be 
replaced over and over again until some condition is fulfilled, but in doing so to obey, not fresh instructions on each 
repetition, but the same ones over and over again. To take a domestic analogy. Suppose Mother wants Tommy to call at 
the cobbler's every morning on his way to school to see if her shoes are done, she can ask him afresh every morning. 
Alternatively she can stick up a notice once and for all in the hall which he will see when he leaves for school and 
which tells him to call for the shoes, and also to destroy the notice when he comes back if he has the shoes with him. 

The reader must accept it as a fact that digital computers can be constructed, and indeed have been constructed, 
according to the principles we have described, and that they can in fact mimic the actions of a human computer very 
closely. 

The book of rules which we have described our human computer as using is of course a convenient fiction. Actual 
human computers really remember what they have got to do. If one wants to make a machine mimic the behaviour of 
the human computer in some complex operation one has to ask him how it is done, and then translate the answer into 
the form of an instruction table. Constructing instruction tables is usually described as "programming." To "programme 
a machine to carry out the operation A" means to put the appropriate instruction table into the machine so that it will do 
A. 

An interesting variant on the idea of a digital computer is a "digital computer with a random element." These have 
instructions involving the throwing of a die or some equivalent electronic process; one such instruction might for 
instance be, "Throw the die and put the-resulting number into store 1000." Sometimes such a machine is described as 
having free will (though I would not use this phrase myself), It is not normally possible to determine from observing a 
machine whether it has a random element, for a similar effect can be produced by such devices as making the choices 
depend on the digits of the decimal for . 

Most actual digital computers have only a finite store. There is no theoretical difficulty in the idea of a computer with 
an unlimited store. Of course only a finite part can have been used at any one time. Likewise only a finite amount can 
have been constructed, but we can imagine more and more being added as required. Such computers have special 
theoretical interest and will be called infinitive capacity computers. 

The idea of a digital computer is an old one. Charles Babbage, Lucasian Professor of Mathematics at Cambridge from 
1828 to 1839, planned such a machine, called the Analytical Engine, but it was never completed. Although Babbage 
had all the essential ideas, his machine was not at that time such a very attractive prospect. The speed which would have 
been available would be definitely faster than a human computer but something like I 00 times slower than the 
Manchester machine, itself one of the slower of the modern machines, The storage was to be purely mechanical, using 
wheels and cards. 

The fact that Babbage's Analytical Engine was to be entirely mechanical will help us to rid ourselves of a superstition. 
Importance is often attached to the fact that modern digital computers are electrical, and that the nervous system also is 
electrical. Since Babbage's machine was not electrical, and since all digital computers are in a sense equivalent, we see 
that this use of electricity cannot be of theoretical importance. Of course electricity usually comes in where fast 
signalling is concerned, so that it is not surprising that we find it in both these connections. In the nervous system 
chemical phenomena are at least as important as electrical. In certain computers the storage system is mainly acoustic. 
The feature of using electricity is thus seen to be only a very superficial similarity. If we wish to find such similarities 
we should took rather for mathematical analogies of function.  

5. Universality of Digital Computers 

The digital computers considered in the last section may be classified amongst the "discrete-state machines." These are 
the machines which move by sudden jumps or clicks from one quite definite state to another. These states are 
sufficiently different for the possibility of confusion between them to be ignored. Strictly speaking there, are no such 
machines. Everything really moves continuously. But there are many kinds of machine which can profitably be thought 
of as being discrete-state machines. For instance in considering the switches for a lighting system it is a convenient 
fiction that each switch must be definitely on or definitely off. There must be intermediate positions, but for most 
purposes we can forget about them. As an example of a discrete-state machine we might consider a wheel which clicks 
round through 120 once a second, but may be stopped by a ]ever which can be operated from outside; in addition a lamp 
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is to light in one of the positions of the wheel. This machine could be described abstractly as follows. The internal state 
of the machine (which is described by the position of the wheel) may be q1, q2 or q3. There is an input signal i0. or i1 
(position of ]ever). The internal state at any moment is determined by the last state and input signal according to the 
table 

(TABLE DELETED) 

 
The output signals, the only externally visible indication of the internal state (the light) are described by the table 

State q1 q2 q3 

output o0 o0 o1 

This example is typical of discrete-state machines. They can be described by such tables provided they have only a 
finite number of possible states. 

It will seem that given the initial state of the machine and the input signals it is always possible to predict all future 
states, This is reminiscent of Laplace's view that from the complete state of the universe at one moment of time, as 
described by the positions and velocities of all particles, it should be possible to predict all future states. The prediction 
which we are considering is, however, rather nearer to practicability than that considered by Laplace. The system of the 
"universe as a whole" is such that quite small errors in the initial conditions can have an overwhelming effect at a later 
time. The displacement of a single electron by a billionth of a centimetre at one moment might make the difference 
between a man being killed by an avalanche a year later, or escaping. It is an essential property of the mechanical 
systems which we have called "discrete-state machines" that this phenomenon does not occur. Even when we consider 
the actual physical machines instead of the idealised machines, reasonably accurate knowledge of the state at one 
moment yields reasonably accurate knowledge any number of steps later.  

As we have mentioned, digital computers fall within the class of discrete-state machines. But the number of states of 
which such a machine is capable is usually enormously large. For instance, the number for the machine now working at 
Manchester is about 2 165,000, i.e., about 10 50,000. Compare this with our example of the clicking wheel described above, 
which had three states. It is not difficult to see why the number of states should be so immense. The computer includes 
a store corresponding to the paper used by a human computer. It must be possible to write into the store any one of the 
combinations of symbols which might have been written on the paper. For simplicity suppose that only digits from 0 to 
9 are used as symbols. Variations in handwriting are ignored. Suppose the computer is allowed 100 sheets of paper each 
containing 50 lines each with room for 30 digits. Then the number of states is 10 100x50x30 i.e., 10 150,000 . This is about the 
number of states of three Manchester machines put together. The logarithm to the base two of the number of states is 
usually called the "storage capacity" of the machine. Thus the Manchester machine has a storage capacity of about 
165,000 and the wheel machine of our example about 1.6. If two machines are put together their capacities must be 
added to obtain the capacity of the resultant machine. This leads to the possibility of statements such as "The 
Manchester machine contains 64 magnetic tracks each with a capacity of 2560, eight electronic tubes with a capacity of 
1280. Miscellaneous storage amounts to about 300 making a total of 174,380."  

Given the table corresponding to a discrete-state machine it is possible to predict what it will do. There is no reason why 
this calculation should not be carried out by means of a digital computer. Provided it could be carried out sufficiently 
quickly the digital computer could mimic the behavior of any discrete-state machine. The imitation game could then be 
played with the machine in question (as B) and the mimicking digital computer (as A) and the interrogator would be 
unable to distinguish them. Of course the digital computer must have an adequate storage capacity as well as working 
sufficiently fast. Moreover, it must be programmed afresh for each new machine which it is desired to mimic. 

This special property of digital computers, that they can mimic any discrete-state machine, is described by saying that 
they are universal machines. The existence of machines with this property has the important consequence that, 
considerations of speed apart, it is unnecessary to design various new machines to do various computing processes. 
They can all be done with one digital computer, suitably programmed for each case. It 'ill be seen that as a consequence 
of this all digital computers are in a sense equivalent. 
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We may now consider again the point raised at the end of §3. It was suggested tentatively that the question, "Can 
machines think?" should be replaced by "Are there imaginable digital computers which would do well in the imitation 
game?" If we wish we can make this superficially more general and ask "Are there discrete-state machines which would 
do well?" But in view of the universality property we see that either of these questions is equivalent to this, "Let us fix 
our attention on one particular digital computer C. Is it true that by modifying this computer to have an adequate 
storage, suitably increasing its speed of action, and providing it with an appropriate programme, C can be made to play 
satisfactorily the part of A in the imitation game, the part of B being taken by a man?" 

6. Contrary Views on the Main Question 

We may now consider the ground to have been cleared and we are ready to proceed to the debate on our question, "Can 
machines think?" and the variant of it quoted at the end of the last section. We cannot altogether abandon the original 
form of the problem, for opinions will differ as to the appropriateness of the substitution and we must at least listen to 
what has to be said in this connexion. 

It will simplify matters for the reader if I explain first my own beliefs in the matter. Consider first the more accurate 
form of the question. I believe that in about fifty years' time it will be possible, to programme computers, with a storage 
capacity of about 109, to make them play the imitation game so well that an average interrogator will not have more 
than 70 per cent chance of making the right identification after five minutes of questioning. The original question, "Can 
machines think?" I believe to be too meaningless to deserve discussion. Nevertheless I believe that at the end of the 
century the use of words and general educated opinion will have altered so much that one will be able to speak of 
machines thinking without expecting to be contradicted. I believe further that no useful purpose is served by concealing 
these beliefs. The popular view that scientists proceed inexorably from well-established fact to well-established fact, 
never being influenced by any improved conjecture, is quite mistaken. Provided it is made clear which are proved facts 
and which are conjectures, no harm can result. Conjectures are of great importance since they suggest useful lines of 
research.  

I now proceed to consider opinions opposed to my own. 

(1) The Theological Objection 

Thinking is a function of man's immortal soul. God has given an immortal soul to every man and woman, but not to any 
other animal or to machines. Hence no animal or machine can think. 

I am unable to accept any part of this, but will attempt to reply in theological terms. I should find the argument more 
convincing if animals were classed with men, for there is a greater difference, to my mind, between the typical animate 
and the inanimate than there is between man and the other animals. The arbitrary character of the orthodox view 
becomes clearer if we consider how it might appear to a member of some other religious community. How do 
Christians regard the Moslem view that women have no souls? But let us leave this point aside and return to the main 
argument. It appears to me that the argument quoted above implies a serious restriction of the omnipotence of the 
Almighty. It is admitted that there are certain things that He cannot do such as making one equal to two, but should we 
not believe that He has freedom to confer a soul on an elephant if He sees fit? We might expect that He would only 
exercise this power in conjunction with a mutation which provided the elephant with an appropriately improved brain to 
minister to the needs of this sort[. An argument of exactly similar form may be made for the case of machines. It may 
seem different because it is more difficult to "swallow." But this really only means that we think it would be less likely 
that He would consider the circumstances suitable for conferring a soul. The circumstances in question are discussed in 
the rest of this paper. In attempting to construct such machines we should not be irreverently usurping His power of 
creating souls, any more than we are in the procreation of children: rather we are, in either case, instruments of His will 
providing .mansions for the souls that He creates. 

However, this is mere speculation. I am not very impressed with theological arguments whatever they may be used to 
support. Such arguments have often been found unsatisfactory in the past. In the time of Galileo it was argued that the 
texts, "And the sun stood still . . . and hasted not to go down about a whole day" (Joshua x. 13) and "He laid the 
foundations of the earth, that it should not move at any time" (Psalm cv. 5) were an adequate refutation of the 
Copernican theory. With our present knowledge such an argument appears futile. When that knowledge was not 
available it made a quite different impression.  
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(2) The "Heads in the Sand" Objection  

The consequences of machines thinking would be too dreadful. Let us hope and believe that they cannot do so."  

This argument is seldom expressed quite so openly as in the form above. But it affects most of us who think about it at 
all. We like to believe that Man is in some subtle way superior to the rest of creation. It is best if he can be shown to be 
necessarily superior, for then there is no danger of him losing his commanding position. The popularity of the 
theological argument is clearly connected with this feeling. It is likely to be quite strong in intellectual people, since 
they value the power of thinking more highly than others, and are more inclined to base their belief in the superiority of 
Man on this power.  

I do not think that this argument is sufficiently substantial to require refutation. Consolation would be more appropriate: 
perhaps this should be sought in the transmigration of souls. 

(3) The Mathematical Objection 

There are a number of results of mathematical logic which can be used to show that there are limitations to the powers 
of discrete-state machines. The best known of these results is known as Godel's theorem ( 1931 ) and shows that in any 
sufficiently powerful logical system statements can be formulated which can neither be proved nor disproved within the 
system, unless possibly the system itself is inconsistent. There are other, in some respects similar, results due to Church 
(1936), Kleene (1935), Rosser, and Turing (1937). The latter result is the most convenient to consider, since it refers 
directly to machines, whereas the others can only be used in a comparatively indirect argument: for instance if Godel's 
theorem is to be used we need in addition to have some means of describing logical systems in terms of machines, and 
machines in terms of logical systems. The result in question refers to a type of machine which is essentially a digital 
computer with an infinite capacity. It states that there are certain things that such a machine cannot do. If it is rigged up 
to give answers to questions as in the imitation game, there will be some questions to which it will either give a wrong 
answer, or fail to give an answer at all however much time is allowed for a reply. There may, of course, be many such 
questions, and questions which cannot be answered by one machine may be satisfactorily answered by another. We are 
of course supposing for the present that the questions are of the kind to which an answer "Yes" or "No" is appropriate, 
rather than questions such as "What do you think of Picasso?" The questions that we know the machines must fail on 
are of this type, "Consider the machine specified as follows. . . . Will this machine ever answer 'Yes' to any question?" 
The dots are to be replaced by a description of some machine in a standard form, which could be something like that 
used in §5. When the machine described bears a certain comparatively simple relation to the machine which is under 
interrogation, it can be shown that the answer is either wrong or not forthcoming. This is the mathematical result: it is 
argued that it proves a disability of machines to which the human intellect is not subject. 

The short answer to this argument is that although it is established that there are limitations to the Powers If any 
particular machine, it has only been stated, without any sort of proof, that no such limitations apply to the human 
intellect. But I do not think this view can be dismissed quite so lightly. Whenever one of these machines is asked the 
appropriate critical question, and gives a definite answer, we know that this answer must be wrong, and this gives us a 
certain feeling of superiority. Is this feeling illusory? It is no doubt quite genuine, but I do not think too much 
importance should be attached to it. We too often give wrong answers to questions ourselves to be justified in being 
very pleased at such evidence of fallibility on the part of the machines. Further, our superiority can only be felt on such 
an occasion in relation to the one machine over which we have scored our petty triumph. There would be no question of 
triumphing simultaneously over all machines. In short, then, there might be men cleverer than any given machine, but 
then again there might be other machines cleverer again, and so on. 

Those who hold to the mathematical argument would, I think, mostly he willing to accept the imitation game as a basis 
for discussion, Those who believe in the two previous objections would probably not be interested in any criteria. 

(4) The Argument from Consciousness 

This argument is very, well expressed in Professor Jefferson's Lister Oration for 1949, from which I quote. "Not until a 
machine can write a sonnet or compose a concerto because of thoughts and emotions felt, and not by the chance fall of 
symbols, could we agree that machine equals brain-that is, not only write it but know that it had written it. No 
mechanism could feel (and not merely artificially signal, an easy contrivance) pleasure at its successes, grief when its 
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valves fuse, be warmed by flattery, be made miserable by its mistakes, be charmed by sex, be angry or depressed when 
it cannot get what it wants." 

This argument appears to be a denial of the validity of our test. According to the most extreme form of this view the 
only way by which one could be sure that machine thinks is to be the machine and to feel oneself thinking. One could 
then describe these feelings to the world, but of course no one would be justified in taking any notice. Likewise 
according to this view the only way to know that a man thinks is to be that particular man. It is in fact the solipsist point 
of view. It may be the most logical view to hold but it makes communication of ideas difficult. A is liable to believe "A 
thinks but B does not" whilst B believes "B thinks but A does not." instead of arguing continually over this point it is 
usual to have the polite convention that everyone thinks. 

I am sure that Professor Jefferson does not wish to adopt the extreme and solipsist point of view. Probably he would be 
quite willing to accept the imitation game as a test. The game (with the player B omitted) is frequently used in practice 
under the name of viva voce to discover whether some one really understands something or has "learnt it parrot 
fashion." Let us listen in to a part of such a viva voce: 

Interrogator: In the first line of your sonnet which reads "Shall I compare thee to a summer's day," would not "a spring 
day" do as well or better? 

Witness: It wouldn't scan. 

Interrogator: How about "a winter's day," That would scan all right. 

Witness: Yes, but nobody wants to be compared to a winter's day. 

Interrogator: Would you say Mr. Pickwick reminded you of Christmas? 

Witness: In a way. 

Interrogator: Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind the comparison. 

Witness: I don't think you're serious. By a winter's day one means a typical winter's day, rather than a special one like 
Christmas. 

And so on, What would Professor Jefferson say if the sonnet-writing machine was able to answer like this in the viva 
voce? I do not know whether he would regard the machine as "merely artificially signalling" these answers, but if the 
answers were as satisfactory and sustained as in the above passage I do not think he would describe it as "an easy 
contrivance." This phrase is, I think, intended to cover such devices as the inclusion in the machine of a record of 
someone reading a sonnet, with appropriate switching to turn it on from time to time. 

In short then, I think that most of those who support the argument from consciousness could be persuaded to abandon it 
rather than be forced into the solipsist position. They will then probably be willing to accept our test. 

I do not wish to give the impression that I think there is no mystery about consciousness. There is, for instance, 
something of a paradox connected with any attempt to localise it. But I do not think these mysteries necessarily need to 
be solved before we can answer the question with which we are concerned in this paper. 

(5) Arguments from Various Disabilities 

These arguments take the form, "I grant you that you can make machines do all the things you have mentioned but you 
will never be able to make one to do X." Numerous features X are suggested in this connexion I offer a selection:  
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Be kind, resourceful, beautiful, friendly, have initiative, have a sense of humour, tell right from wrong, make mistakes, 
fall in love, enjoy strawberries and cream, make some one fall in love with it, learn from experience, use words 
properly, be the subject of its own thought, have as much diversity of behaviour as a man, do something really new. 

No support is usually offered for these statements. I believe they are mostly founded on the principle of scientific 
induction. A man has seen thousands of machines in his lifetime. From what he sees of them he draws a number of 
general conclusions. They are ugly, each is designed for a very limited purpose, when required for a minutely different 
purpose they are useless, the variety of behaviour of any one of them is very small, etc., etc. Naturally he concludes that 
these are necessary properties of machines in general. Many of these limitations are associated with the very small 
storage capacity of most machines. (I am assuming that the idea of storage capacity is extended in some way to cover 
machines other than discrete-state machines. The exact definition does not matter as no mathematical accuracy is 
claimed in the present discussion,) A few years ago, when very little had been heard of digital computers, it was 
possible to elicit much incredulity concerning them, if one mentioned their properties without describing their 
construction. That was presumably due to a similar application of the principle of scientific induction. These 
applications of the principle are of course largely unconscious. When a burnt child fears the fire and shows that he fears 
it by avoiding it, f should say that he was applying scientific induction. (I could of course also describe his behaviour in 
many other ways.) The works and customs of mankind do not seem to be very suitable material to which to apply 
scientific induction. A very large part of space-time must be investigated, if reliable results are to be obtained. 
Otherwise we may (as most English 'Children do) decide that everybody speaks English, and that it is silly to learn 
French.  

There are, however, special remarks to be made about many of the disabilities that have been mentioned. The inability 
to enjoy strawberries and cream may have struck the reader as frivolous. Possibly a machine might be made to enjoy 
this delicious dish, but any attempt to make one do so would be idiotic. What is important about this disability is that it 
contributes to some of the other disabilities, e.g., to the difficulty of the same kind of friendliness occurring between 
man and machine as between white man and white man, or between black man and black man. 

The claim that "machines cannot make mistakes" seems a curious one. One is tempted to retort, "Are they any the worse 
for that?" But let us adopt a more sympathetic attitude, and try to see what is really meant. I think this criticism can be 
explained in terms of the imitation game. It is claimed that the interrogator could distinguish the machine from the man 
simply by setting them a number of problems in arithmetic. The machine would be unmasked because of its deadly 
accuracy. The reply to this is simple. The machine (programmed for playing the game) would not attempt to give the 
right answers to the arithmetic problems. It would deliberately introduce mistakes in a manner calculated to confuse the 
interrogator. A mechanical fault would probably show itself through an unsuitable decision as to what sort of a mistake 
to make in the arithmetic. Even this interpretation of the criticism is not sufficiently sympathetic. But we cannot afford 
the space to go into it much further. It seems to me that this criticism depends on a confusion between two kinds of 
mistake, We may call them "errors of functioning" and "errors of conclusion." Errors of functioning are due to some 
mechanical or electrical fault which causes the machine to behave otherwise than it was designed to do. In philosophical 
discussions one likes to ignore the possibility of such errors; one is therefore discussing "abstract machines." These 
abstract machines are mathematical fictions rather than physical objects. By definition they are incapable of errors of 
functioning. In this sense we can truly say that "machines can never make mistakes." Errors of conclusion can only arise 
when some meaning is attached to the output signals from the machine. The machine might, for instance, type out 
mathematical equations, or sentences in English. When a false proposition is typed we say that the machine has 
committed an error of conclusion. There is clearly no reason at all for saying that a machine cannot make this kind of 
mistake. It might do nothing but type out repeatedly "O = I." To take a less perverse example, it might have some 
method for drawing conclusions by scientific induction. We must expect such a method to lead occasionally to 
erroneous results. 

The claim that a machine cannot be the subject of its own thought can of course only be answered if it can be shown 
that the machine has some thought with some subject matter. Nevertheless, "the subject matter of a machine's 
operations" does seem to mean something, at least to the people who deal with it. If, for instance, the machine was 
trying to find a solution of the equation x2 - 40x - 11 = 0 one would be tempted to describe this equation as part of the 
machine's subject matter at that moment. In this sort of sense a machine undoubtedly can be its own subject matter. It 
may be used to help in making up its own programmes, or to predict the effect of alterations in its own structure. By 
observing the results of its own behaviour it can modify its own programmes so as to achieve some purpose more 
effectively. These are possibilities of the near future, rather than Utopian dreams. 
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The criticism that a machine cannot have much diversity of behaviour is just a way of saying that it cannot have much 
storage capacity. Until fairly recently a storage capacity of even a thousand digits was very rare.  

The criticisms that we are considering here are often disguised forms of the argument from consciousness, Usually if 
one maintains that a machine can do one of these things, and describes the kind of method that the machine could use, 
one will not make much of an impression. It is thought that tile method (whatever it may be, for it must be mechanical) 
is really rather base. Compare the parentheses in Jefferson's statement quoted on page 22. 

(6) Lady Lovelace's Objection 

Our most detailed information of Babbage's Analytical Engine comes from a memoir by Lady Lovelace ( 1842). In it 
she states, "The Analytical Engine has no pretensions to originate anything. It can do whatever we know how to order it 
to perform" (her italics). This statement is quoted by Hartree ( 1949) who adds: "This does not imply that it may not be 
possible to construct electronic equipment which will 'think for itself,' or in which, in biological terms, one could set up 
a conditioned reflex, which would serve as a basis for 'learning.' Whether this is possible in principle or not is a 
stimulating and exciting question, suggested by some of these recent developments But it did not seem that the 
machines constructed or projected at the time had this property." 

I am in thorough agreement with Hartree over this. It will be noticed that he does not assert that the machines in 
question had not got the property, but rather that the evidence available to Lady Lovelace did not encourage her to 
believe that they had it. It is quite possible that the machines in question had in a sense got this property. For suppose 
that some discrete-state machine has the property. The Analytical Engine was a universal digital computer, so that, if its 
storage capacity and speed were adequate, it could by suitable programming be made to mimic the machine in question. 
Probably this argument did not occur to the Countess or to Babbage. In any case there was no obligation on them to 
claim all that could be claimed. 

This whole question will be considered again under the heading of learning machines. 

A variant of Lady Lovelace's objection states that a machine can "never do anything really new." This may be parried 
for a moment with the saw, "There is nothing new under the sun." Who can be certain that "original work" that he has 
done was not simply the growth of the seed planted in him by teaching, or the effect of following well-known general 
principles. A better variant of the objection says that a machine can never "take us by surprise." This statement is a 
more direct challenge and can be met directly. Machines take me by surprise with great frequency. This is largely 
because I do not do sufficient calculation to decide what to expect them to do, or rather because, although I do a 
calculation, I do it in a hurried, slipshod fashion, taking risks. Perhaps I say to myself, "I suppose the Voltage here 
ought to he the same as there: anyway let's assume it is." Naturally I am often wrong, and the result is a surprise for me 
for by the time the experiment is done these assumptions have been forgotten. These admissions lay me open to lectures 
on the subject of my vicious ways, but do not throw any doubt on my credibility when I testify to the surprises I 
experience. 

I do not expect this reply to silence my critic. He will probably say that h surprises are due to some creative mental act 
on my part, and reflect no credit on the machine. This leads us back to the argument from consciousness, and far from 
the idea of surprise. It is a line of argument we must consider closed, but it is perhaps worth remarking that the 
appreciation of something as surprising requires as much of a "creative mental act" whether the surprising event 
originates from a man, a book, a machine or anything else. 

The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and 
mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all 
consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many 
circumstances, but one too easily forgets that it is false. A natural consequence of doing so is that one then assumes that 
there is no virtue in the mere working out of consequences from data and general principles. 

(7) Argument from Continuity in the Nervous System  

The nervous system is certainly not a discrete-state machine. A small error in the information about the size of a 
nervous impulse impinging on a neuron, may make a large difference to the size of the outgoing impulse. It may be 
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argued that, this being so, one cannot expect to be able to mimic the behaviour of the nervous system with a discrete-
state system. 

It is true that a discrete-state machine must be different from a continuous machine. But if we adhere to the conditions 
of the imitation game, the interrogator will not be able to take any advantage of this difference. The situation can be 
made clearer if we consider sonic other simpler continuous machine. A differential analyser will do very well. (A 
differential analyser is a certain kind of machine not of the discrete-state type used for some kinds of calculation.) Some 
of these provide their answers in a typed form, and so are suitable for taking part in the game. It would not be possible 
for a digital computer to predict exactly what answers the differential analyser would give to a problem, but it would be 
quite capable of giving the right sort of answer. For instance, if asked to give the value of (actually about 3.1416) it 
would be reasonable to choose at random between the values 3.12, 3.13, 3.14, 3.15, 3.16 with the probabilities of 0.05, 
0.15, 0.55, 0.19, 0.06 (say). Under these circumstances it would be very difficult for the interrogator to distinguish the 
differential analyser from the digital computer.  

(8) The Argument from Informality of Behaviour  

It is not possible to produce a set of rules purporting to describe what a man should do in every conceivable set of 
circumstances. One might for instance have a rule that one is to stop when one sees a red traffic light, and to go if one 
sees a green one, but what if by some fault both appear together? One may perhaps decide that it is safest to stop. But 
some further difficulty may well arise from this decision later. To attempt to provide rules of conduct to cover every 
eventuality, even those arising from traffic lights, appears to be impossible. With all this I agree. 

From this it is argued that we cannot be machines. I shall try to reproduce the argument, but I fear I shall hardly do it 
justice. It seems to run something like this. "if each man had a definite set of rules of conduct by which he regulated his 
life he would be no better than a machine. But there are no such rules, so men cannot be machines." The undistributed 
middle is glaring. I do not think the argument is ever put quite like this, but I believe this is the argument used 
nevertheless. There may however be a certain confusion between "rules of conduct" and "laws of behaviour" to cloud 
the issue. By "rules of conduct" I mean precepts such as "Stop if you see red lights," on which one can act, and of which 
one can be conscious. By "laws of behaviour" I mean laws of nature as applied to a man's body such as "if you pinch 
him he will squeak." If we substitute "laws of behaviour which regulate his life" for "laws of conduct by which he 
regulates his life" in the argument quoted the undistributed middle is no longer insuperable. For we believe that it is not 
only true that being regulated by laws of behaviour implies being some sort of machine (though not necessarily a 
discrete-state machine), but that conversely being such a machine implies being regulated by such laws. However, we 
cannot so easily convince ourselves of the absence of complete laws of behaviour as of complete rules of conduct. The 
only way we know of for finding such laws is scientific observation, and we certainly know of no circumstances under 
which we could say, "We have searched enough. There are no such laws." 

We can demonstrate more forcibly that any such statement would be unjustified. For suppose we could be sure of 
finding such laws if they existed. Then given a discrete-state machine it should certainly be possible to discover by 
observation sufficient about it to predict its future behaviour, and this within a reasonable time, say a thousand years. 
But this does not seem to be the case. I have set up on the Manchester computer a small programme using only 1,000 
units of storage, whereby the machine supplied with one sixteen-figure number replies with another within two seconds. 
I would defy anyone to learn from these replies sufficient about the programme to be able to predict any replies to 
untried values. 

(9) The Argument from Extrasensory Perception  

I assume that the reader is familiar with the idea of extrasensory perception, and the meaning of the four items of it, 
viz., telepathy, clairvoyance, precognition and psychokinesis. These disturbing phenomena seem to deny all our usual 
scientific ideas. How we should like to discredit them! Unfortunately the statistical evidence, at least for telepathy, is 
overwhelming. It is very difficult to rearrange one's ideas so as to fit these new facts in. Once one has accepted them it 
does not seem a very big step to believe in ghosts and bogies. The idea that our bodies move simply according to the 
known laws of physics, together with some others not yet discovered but somewhat similar, would be one of the first to 
go. 

plenty.pdf   20plenty.pdf   20 19/07/2006   1.08.2219/07/2006   1.08.22



This argument is to my mind quite a strong one. One can say in reply that many scientific theories seem to remain 
workable in practice, in spite of clashing with ESP; that in fact one can get along very nicely if one forgets about it. This 
is rather cold comfort, and one fears that thinking is just the kind of phenomenon where ESP may be especially 
relevant. 

A more specific argument based on ESP might run as follows: "Let us play the imitation game, using as witnesses a 
man who is good as a telepathic receiver, and a digital computer. The interrogator can ask such questions as 'What suit 
does the card in my right hand belong to?' The man by telepathy or clairvoyance gives the right answer 130 times out of 
400 cards. The machine can only guess at random, and perhaps gets 104 right, so the interrogator makes the right 
identification." There is an interesting possibility which opens here. Suppose the digital computer contains a random 
number generator. Then it will be natural to use this to decide what answer to give. But then the random number 
generator will be subject to the psychokinetic powers of the interrogator. Perhaps this psychokinesis might cause the 
machine to guess right more often than would be expected on a probability calculation, so that the interrogator might 
still be unable to make the right identification. On the other hand, he might be able to guess right without any 
questioning, by clairvoyance. With ESP anything may happen. 

If telepathy is admitted it will be necessary to tighten our test up. The situation could be regarded as analogous to that 
which would occur if the interrogator were talking to himself and one of the competitors was listening with his ear to 
the wall. To put the competitors into a "telepathy-proof room" would satisfy all requirements. 

7. Learning Machines 

The reader will have anticipated that I have no very convincing arguments of a positive nature to support my views. If I 
had I should not have taken such pains to point out the fallacies in contrary views. Such evidence as I have I shall now 
give. 

Let us return for a moment to Lady Lovelace's objection, which stated that the machine can only do what we tell it to 
do. One could say that a man can "inject" an idea into the machine, and that it will respond to a certain extent and then 
drop into quiescence, like a piano string struck by a hammer. Another simile would be an atomic pile of less than 
critical size: an injected idea is to correspond to a neutron entering the pile from without. Each such neutron will cause a 
certain disturbance which eventually dies away. If, however, the size of the pile is sufficiently increased, tire 
disturbance caused by such an incoming neutron will very likely go on and on increasing until the whole pile is 
destroyed. Is there a corresponding phenomenon for minds, and is there one for machines? There does seem to be one 
for the human mind. The majority of them seem to be "subcritical," i.e., to correspond in this analogy to piles of 
subcritical size. An idea presented to such a mind will on average give rise to less than one idea in reply. A smallish 
proportion are supercritical. An idea presented to such a mind that may give rise to a whole "theory" consisting of 
secondary, tertiary and more remote ideas. Animals minds seem to be very definitely subcritical. Adhering to this 
analogy we ask, "Can a machine be made to be supercritical?" 

The "skin-of-an-onion" analogy is also helpful. In considering the functions of the mind or the brain we find certain 
operations which we can explain in purely mechanical terms. This we say does not correspond to the real mind: it is a 
sort of skin which we must strip off if we are to find the real mind. But then in what remains we find a further skin to be 
stripped off, and so on. Proceeding in this way do we ever come to the "real" mind, or do we eventually come to the 
skin which has nothing in it? In the latter case the whole mind is mechanical. (It would not be a discrete-state machine 
however. We have discussed this.) 

These last two paragraphs do not claim to be convincing arguments. They should rather be described as "recitations 
tending to produce belief." 

The only really satisfactory support that can be given for the view expressed at the beginning of §6, will be that 
provided by waiting for the end of the century and then doing the experiment described. But what can we say in the 
meantime? What steps should be taken now if the experiment is to be successful?  

As I have explained, the problem is mainly one of programming. Advances in engineering will have to be made too, but 
it seems unlikely that these will not be adequate for the requirements. Estimates of the storage capacity of the brain vary 
from 1010 to 1015 binary digits. I incline to the lower values and believe that only a very small fraction is used for the 
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higher types of thinking. Most of it is probably used for the retention of visual impressions, I should be surprised if 
more than 109 was required for satisfactory playing of the imitation game, at any rate against a blind man. (Note: The 
capacity of the Encyclopaedia Britannica, 11th edition, is 2 X 109) A storage capacity of 107, would be a very 
practicable possibility even by present techniques. It is probably not necessary to increase the speed of operations of the 
machines at all. Parts of modern machines which can be regarded as analogs of nerve cells work about a thousand times 
faster than the latter. This should provide a "margin of safety" which could cover losses of speed arising in many ways, 
Our problem then is to find out how to programme these machines to play the game. At my present rate of working I 
produce about a thousand digits of progratiirne a day, so that about sixty workers, working steadily through the fifty 
years might accomplish the job, if nothing went into the wastepaper basket. Some more expeditious method seems 
desirable. 

In the process of trying to imitate an adult human mind we are bound to think a good deal about the process which has 
brought it to the state that it is in. We may notice three components. 

(a) The initial state of the mind, say at birth,  

(b) The education to which it has been subjected,  

(c) Other experience, not to be described as education, to which it has been subjected. 

Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates 
the child's? If this were then subjected to an appropriate course of education one would obtain the adult brain. 
Presumably the child brain is something like a notebook as one buys it from the stationer's. Rather little mechanism, and 
lots of blank sheets. (Mechanism and writing are from our point of view almost synonymous.) Our hope is that there is 
so little mechanism in the child brain that something like it can be easily programmed. The amount of work in the 
education we can assume, as a first approximation, to be much the same as for the human child. 

We have thus divided our problem into two parts. The child programme and the education process. These two remain 
very closely connected. We cannot expect to find a good child machine at the first attempt. One must experiment with 
teaching one such machine and see how well it learns. One can then try another and see if it is better or worse. There is 
an obvious connection between this process and evolution, by the identifications  

Structure of the child machine = hereditary material  

Changes of the child machine = mutation, 

Natural selection = judgment of the experimenter  

One may hope, however, that this process will be more expeditious than evolution. The survival of the fittest is a slow 
method for measuring advantages. The experimenter, by the exercise of intelligence, should he able to speed it up. 
Equally important is the fact that he is not restricted to random mutations. If he can trace a cause for some weakness he 
can probably think of the kind of mutation which will improve it. 

It will not be possible to apply exactly the same teaching process to the machine as to a normal child. It will not, for 
instance, be provided with legs, so that it could not be asked to go out and fill the coal scuttle. Possibly it might not have 
eyes. But however well these deficiencies might be overcome by clever engineering, one could not send the creature to 
school without the other children making excessive fun of it. It must be given some tuition. We need not be too 
concerned about the legs, eyes, etc. The example of Miss Helen Keller shows that education can take place provided 
that communication in both directions between teacher and pupil can take place by some means or other.  

We normally associate punishments and rewards with the teaching process. Some simple child machines can be 
constructed or programmed on this sort of principle. The machine has to be so constructed that events which shortly 
preceded the occurrence of a punishment signal are unlikely to be repeated, whereas a reward signal increased the 
probability of repetition of the events which led up to it. These definitions do not presuppose any feelings on the part of 
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the machine, I have done some experiments with one such child machine, and succeeded in teaching it a few things, but 
the teaching method was too unorthodox for the experiment to be considered really successful. 

The use of punishments and rewards can at best be a part of the teaching process. Roughly speaking, if the teacher has 
no other means of communicating to the pupil, the amount of information which can reach him does not exceed the total 
number of rewards and punishments applied. By the time a child has learnt to repeat "Casabianca" he would probably 
feel very sore indeed, if the text could only be discovered by a "Twenty Questions" technique, every "NO" taking the 
form of a blow. It is necessary therefore to have some other "unemotional" channels of communication. If these are 
available it is possible to teach a machine by punishments and rewards to obey orders given in some language, e.g., a 
symbolic language. These orders are to be transmitted through the "unemotional" channels. The use of this language 
will diminish greatly the number of punishments and rewards required. 

Opinions may vary as to the complexity which is suitable in the child machine. One might try to make it as simple as 
possible consistently with the general principles. Alternatively one might have a complete system of logical inference 
"built in."' In the latter case the store would be largely occupied with definitions and propositions. The propositions 
would have various kinds of status, e.g., well-established facts, conjectures, mathematically proved theorems, 
statements given by an authority, expressions having the logical form of proposition but not belief-value. Certain 
propositions may be described as "imperatives." The machine should be so constructed that as soon as an imperative is 
classed as "well established" the appropriate action automatically takes place. To illustrate this, suppose the teacher says 
to the machine, "Do your homework now." This may cause "Teacher says 'Do your homework now' " to be included 
amongst the well-established facts. Another such fact might be, "Everything that teacher says is true." Combining these 
may eventually lead to the imperative, "Do your homework now," being included amongst the well-established facts, 
and this, by the construction of the machine, will mean that the homework actually gets started, but the effect is very 
satisfactory. The processes of inference used by the machine need not be such as would satisfy the most exacting 
logicians. There might for instance be no hierarchy of types. But this need not mean that type fallacies will occur, any 
more than we are bound to fall over unfenced cliffs. Suitable imperatives (expressed within the systems, not forming 
part of the rules of the system) such as "Do not use a class unless it is a subclass of one which has been mentioned by 
teacher" can have a similar effect to "Do not go too near the edge." 

The imperatives that can be obeyed by a machine that has no limbs are bound to be of a rather intellectual character, as 
in the example (doing homework) given above. important amongst such imperatives will be ones which regulate the 
order in which the rules of the logical system concerned are to be applied, For at each stage when one is using a logical 
system, there is a very large number of alternative steps, any of which one is permitted to apply, so far as obedience to 
the rules of the logical system is concerned. These choices make the difference between a brilliant and a footling 
reasoner, not the difference between a sound and a fallacious one. Propositions leading to imperatives of this kind might 
be "When Socrates is mentioned, use the syllogism in Barbara" or "If one method has been proved to be quicker than 
another, do not use the slower method." Some of these may be "given by authority," but others may be produced by the 
machine itself, e.g. by scientific induction.  

The idea of a learning machine may appear paradoxical to some readers. How can the rules of operation of the machine 
change? They should describe completely how the machine will react whatever its history might be, whatever changes 
it might undergo. The rules are thus quite time-invariant. This is quite true. The explanation of the paradox is that the 
rules which get changed in the learning process are of a rather less pretentious kind, claiming only an ephemeral 
validity. The reader may draw a parallel with the Constitution of the United States. 

An important feature of a learning machine is that its teacher will often be very largely ignorant of quite what is going 
on inside, although he may still be able to some extent to predict his pupil's behavior. This should apply most strongly 
to the later education of a machine arising from a child machine of well-tried design (or programme). This is in clear 
contrast with normal procedure when using a machine to do computations one's object is then to have a clear mental 
picture of the state of the machine at each moment in the computation. This object can only be achieved with a struggle. 
The view that "the machine can only do what we know how to order it to do,"' appears strange in face of this. Most of 
the programmes which we can put into the machine will result in its doing something that we cannot make sense (if at 
all, or which we regard as completely random behaviour. Intelligent behaviour presumably consists in a departure from 
the completely disciplined behaviour involved in computation, but a rather slight one, which does not give rise to 
random behaviour, or to pointless repetitive loops. Another important result of preparing our machine for its part in the 
imitation game by a process of teaching and learning is that "human fallibility" is likely to be omitted in a rather natural 
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way, i.e., without special "coaching." (The reader should reconcile this with the point of view on pages 23 and 24.) 
Processes that are learnt do not produce a hundred per cent certainty of result; if they did they could not be unlearnt. 

It is probably wise to include a random element in a learning machine. A random element is rather useful when we are 
searching for a solution of some problem. Suppose for instance we wanted to find a number between 50 and 200 which 
was equal to the square of the sum of its digits, we might start at 51 then try 52 and go on until we got a number that 
worked. Alternatively we might choose numbers at random until we got a good one. This method has the advantage that 
it is unnecessary to keep track of the values that have been tried, but the disadvantage that one may try the same one 
twice, but this is not very important if there are several solutions. The systematic method has the disadvantage that there 
may be an enormous block without any solutions in the region which has to be investigated first, Now the learning 
process may be regarded as a search for a form of behaviour which will satisfy the teacher (or some other criterion). 
Since there is probably a very large number of satisfactory solutions the random method seems to be better than the 
systematic. It should be noticed that it is used in the analogous process of evolution. But there the systematic method is 
not possible. How could one keep track of the different genetical combinations that had been tried, so as to avoid trying 
them again? 

We may hope that machines will eventually compete with men in all purely intellectual fields. But which are the best 
ones to start with? Even this is a difficult decision. Many people think that a very abstract activity, like the playing of 
chess, would be best. It can also be maintained that it is best to provide the machine with the best sense organs that 
money can buy, and then teach it to understand and speak English. This process could follow the normal teaching of a 
child. Things would be pointed out and named, etc. Again I do not know what the right answer is, but I think both 
approaches should be tried. 

We can only see a short distance ahead, but we can see plenty there that needs to be done. 
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Lessons from a Restricted Turing Test 

Stuart M. Shieber  
Aiken Computation Laboratory  
Division of Applied Sciences  
Harvard University  

April 15, 1993 
(Revision 5)  

Abstract: 

We report on the recent Loebner prize competition inspired by Turing's test of intelligent behavior. The presentation 
covers the structure of the competition and the outcome of its first instantiation in an actual event, and an analysis of 
the purpose, design, and appropriateness of such a competition. We argue that the competition has no clear purpose, 
that its design prevents any useful outcome, and that such a competition is inappropriate given the current level of 
technology. We then speculate as to suitable alternatives to the Loebner prize.  

This report appeared in Communications of the Association for Computing Machinery, volume 37, number 6, pages 70-
78, 1994. Also available as cmp-lg/9404002 and from the Center for Research in Computing Technology, Harvard 
University, as Technical Report TR-19-92. 

The Turing Test and the Loebner Prize 

The English logician and mathematician Alan Turing, in an attempt to develop a working definition of intelligence free 
of the difficulties and philosophical pitfalls of defining exactly what constitutes the mental process of intelligent 
reasoning, devised a test, instead, of intelligent behavior. The idea, codified in his celebrated 1950 paper ``Computing 
Machinery and Intelligence'' [28], was specified as an ``imitation game'' in which a judge attempts to distinguish which 
of two agents is a human and which a computer imitating human responses by engaging each in a wide-ranging 
conversation of any topic and tenor. Turing's reasoning was that, presuming that intelligence was only practically 
determinable behaviorally, then any agent that was indistinguishable in behavior from an intelligent agent was, for all 
intents and purposes, intelligent. It is presumably uncontroversial that humans are intelligent as evidenced by their 
conversational behavior. Thus, any agent that can be mistaken by virtue of its conversational behavior with a human 
must be intelligent. As Turing himself noted, this syllogism argues that the criterion provides a sufficient, but not 
necessary, condition for intelligent behavior. The game has since become known as the ``Turing test'', a term that has 
eclipsed even his eponymous machine in Turing's terminological legacy. Turing predicted that by the year 2000, 
computers would be able to pass the Turing test at a reasonably sophisticated level, in particular, that the average 
interrogator would not be able to identify the computer correctly more than 70 per cent of the time after a five minute 
conversation.  

On November 8, 1991, an eclectic group including academics, business people, press, and passers-by filled two floors 
of Boston's Computer Museum for a tournament billed as the first actual administration of the Turing test. The 
tournament was the first attempt on the recently constituted Loebner Prize established by New York theater equipment 
manufacturer Dr. Hugh Loebner and organized by Dr. Robert Epstein, President Emeritus of the Cambridge Center for 
Behavioral Studies, a research center specializing in behaviorist psychology. The Loebner Prize is administered by an 
illustrious committee headed by Dr. Daniel Dennett, Distinguished Professor of Arts and Sciences and Director for 
Cognitive Studies, Tufts University, and including Dr. Epstein; Dr. Harry Lewis, Gordon McKay Professor of 
Computer Science, Harvard University; Dr. H. McIlvaine Parsons, Senior Research Scientist, HumRRO; Dr. Willard 
van Orman Quine, Edgar Pierce Professor of Philosophy Emeritus, Harvard University; and Dr. Joseph Weizenbaum, 
Professor of Computer Science Emeritus, Massachusetts Institute of Technology. (Dr. I. Bernard Cohen, Victor S. 
Thomas Professor of the History of Science Emeritus, Harvard University, chaired the committee at an earlier stage in 
its genesis, and Dr. Allen Newell, U. A. and Helen Whitaker University Professor of Computer Science, Carnegie-
Mellon University, and the prize establisher Dr. Loebner served as advisors.)  

The prize committee spent almost two years in planning the structure of the tournament. Because this was to be a real 
competition, rather than a thought experiment, there would be several computer contestants, and therefore several 
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confederates would be needed as well.  It was decided that there would be ten agents all together. In the event, six 
were computer programs. Ten judges would converse with the agents and score them. The judges and confederates were 
both selected from the general public on the basis of a newspaper employment advertisement that required little beyond 
typing ability, then screened by interview with the prize committee. They were chosen so as to have ``no special 
expertise in computer science''.  

The committee realized early on that given the current state of the art, there was no chance that Turing's test, as 
originally defined, had the slightest chance of being passed by a computer program. Consequently, they attempted to 
adjust both the structure of the test and the scoring mechanism, so as to allow the computers a fighting chance. In 
particular, the following two rules were added to dramatically restrict Turing's test.  

• Limiting the topic: In order to limit the amount of area that the contestant programs must be able to cope with, 
the topic of the conversation was to be strictly limited, both for the contestants and the confederates. The 
judges were required to stay on the subject in their conversations with the agents.  

• Limiting the tenor: Further, only behavior evinced during the course of a natural conversation on the single 
specified topic would be required to be duplicated faithfully by the contestants. The operative rule precluded 
the use of ``trickery or guile. Judges should respond naturally, as they would in a conversation with another 
person.'' (The method of choosing judges served as a further measure against excessive judicial sophistication.)  

As will be seen, these two rules - limiting the topic and tenor of the discussion - were quite problematic.  

The prize committee specified that there be independent referees stationed in several locations: several in the rooms 
with the judges and confederates to answer questions concerning interpretation of the above rules, and one in the 
auditorium to serve as a sort of roving ombudsman. I was a referee in the confederates' room, and can vouch for the fact 
that my and my colleagues' efforts there were hardly needed; the confederates performed admirably. Reports from the 
other referees indicated the same for the judges.   

Dr. Loebner placed only two restrictions on the setting up of the competition by the prize committee: that a competition 
be held each year, and that a prize be awarded at each competition. The prize at this first competition was a nominal 
$1500, although Dr. Loebner has reportedly earmarked $100,000 for the first computer program to pass the full Turing 
test at some later running of the competition. (Costs for the running of the competition itself were paid for by grants 
from the National Science Foundation and the Sloan Foundation.)  

    
Figure 1: Mock-up of the form used to implement the scoring method for the first Loebner competition. The judge 
writes the letters corresponding to the terminals in order from least to most human-like, and draws a line purporting to 
separate the computer contestants from the human confederates. In this case, the line has been drawn such that three of 
the terminals (F, H, and G) were deemed to be connected to humans. 

To determine the prize-winner, an ingenious scoring mechanism was devised. The Turing test involves a single binary 
decision, which is either right or wrong. But to determine a winner, the contestants had to be ranked, so each judge was 
required to place all of the agents in order from the apparently least human to most human. This alone induced the 
ordering on the basis of which the prize would be awarded. The contestant with the highest average rank would be 
deemed the winner of the tournament. However, this does not allow a direct reconstruction of the results of the 100 
implicit binary decisions that might be made: which of the agents were humans, and which computers. To allow for this 
to be deduced as well, each judge was requested to place a single line separating the ranked agents into two groups. 
Those to the right of the line were claimed by that judge to be humans, those to the left computers. (See Figure 1.) The 
judges were told that at least two of the agents were human confederates, and at least two computer contestants, thus 
limiting the number of places that the line could be (rationally) placed. The binary decisions could then be read off of 
the rankings by noting on which side of the line each agent fell. This demarcation process was not used in the awarding 
of the prize, but was carried out for its informational value alone.  
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The Event 

The tournament was to begin at 1 pm on the scheduled Friday. One room of the computer museum was set up with ten 
terminals for the judges, each labeled with a code letter and the specified topic for conversing with the associated agent. 
In a back room, hidden from the publicly accessible part of the museum for obvious reasons, five computers had been 
set up to serve the four confederates. (One terminal was intended to be a backup, and in case it was not needed, to be 
connected to a publicly accessible terminal so that press and the public could interact with it as a sort of separate Turing 
test.) In a large auditorium, the ten conversations were projected each on its own screen around the perimeter of the 
room, and A. K. Dewdney provided running commentary.  

Unfortunately, there were serious technical difficulties with the rented computer equipment that had been set up for the 
confederates. None of the three IBM computers could be made to appropriately interact over the prepared lines with 
their companion terminal in the judges' room. (The two DEC workstations seemed to work fine.) After almost two 
hours of unsuccessful last minute engineering, the prize committee decided to begin the competition with only two 
confederates in place (just the number that the judges had been told was the minimum), reducing the number of agents 
to eight. The time that each judge had to converse with each agent was shortened from approximately fifteen minutes to 
approximately seven in order to accommodate the press's deadlines.  

The topics chosen by the six contestants were of the sort appropriate for a cocktail party venue (burgundy wines, dry 
martinis, small talk, whimsical conversation, dissatisfactions in relationships) or perhaps, a child's birthday party 
(second grade school topics). The two participating confederates chose to converse on Shakespeare and women's 
clothing. In the end, and perhaps unsurprisingly, the average rankings placed the two human confederates as ``more 
human-like'' than the six contestants. The highest-ranked contestant, Joseph Weintraub's program (topic: whimsical 
conversation) was awarded the $1500 prize.  

The surprises, such as there were, were in the bipartite classifications. Five judges ranked the top contestant as human, 
and there were eight instances of such misclassifications of computers as humans overall. (For the record, the contestant 
discussing relationship problems, the entry of Dr. Kenneth Colby, well known for his PARRY program, which 
simulates paranoid responses, was twice rated human. The simulated seven-year old accounted for the final 
misclassification.)  

Ms. Cynthia Clay, the Shakespeare aficionado, was thrice misclassified as a computer. At least one of the judges made 
her classification on the premise that ``[no] human would have that amount of knowledge about Shakespeare.'' [26] Ms. 
Lisette Gozo was honored as the most human of the agents for her discussion of women's clothing, although one judge 
rated two computer programs above her.  

Perhaps the most conspicuous characteristic of the six computer programs was their poor performance. It was widely 
recognized that computer experts could readily distinguish the contestants from the confederates. Indeed, many of the 
techniques being used by the programs were easily spotted by those familiar with the ELIZA program that prize 
committee member Weizenbaum developed in 1965. The repetition of previous statements verbatim (subject only to 
pronominal adjustments, sometimes wrong), answers transparently keyed to trigger words, and similar tricks of the 
ELIZA trade were ubiquitous. For example, the following example from the whimsical conversation program is 
illustrative of the regurgitation technique:   

01:11:42 Judge 10 
It has been a long day! Now I think I'm ready for some fun. The weather isn't very pleasant today. Do you have any 
jokes that could lift the clouds? 
01:13:01 Terminal 5 
Everybody talks about the weather but nobody seems to do much about it. Why do you need to tell me now you think 
you're ready for some fun? Groannnnnn...............  

Note that the first sentence in the reply, which concerns the weather, seems to be triggered by the keywords ``weather'' 
or ``clouds'' in the judge's contribution. The second sentence is comprised of the judge's second sentence, with pronouns 
transposed, and preceded by the introductory ``Why do you need to tell me''.  
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Such techniques are subject to well-known and obvious errors, as can be exemplified in the transcripts of interactions 
with the winning computer entrant. For instance, a naive application of pronoun transposition interacts poorly with tag 
questions like ``aren't you''.  

01:17:52 Judge 10 
You're trying to make this difficult for me aren't you? I just explained that I was ready for fun! 
01:18:53 Terminal 5 
Would you pre]fer it if it was not true that IO re trying to make this difficult for you aren't you? I just explained that i 
was ready for fun! I am, therfore I compute.... What makes you think I am trying to make this difficult for you aren't i?  
Similarly, repetition of a compound phrase is conversationally bizarre.  
01:35:26 Judge 6 
I can't say I understand the question...but the whimsy of a poet is one thing and the whimsy of most of us is another. 
01:36:51 Terminal 5 
How do you know you can t say you understand the question...but the whimsy of a poet is one thing and the whimsy of 
most of us is another.  

One reporter noted that Weizenbaum himself was ``disturbed'' by how easily people were fooled by these programs 
[26], and more than one of the judges reported that they were disappointed in the programs' capabilities after their 
expectations had been raised by interacting with ELIZA in the interviewing process. Dr. Epstein, in a speech after the 
event, noted that he had learned from the day's proceedings that ``little progress has been made in the last twenty-five 
years'', that is, since ELIZA. (We address this dubious conclusion below.)  

Analysis 

The obvious question, then, is how to reconcile the apparent success of the programs in fooling judges with their 
patently low technology. Clearly, part of the answer relies on the phenomenon that P. T. Barnum used to amass a 
fortune. People are easily fooled, and are especially easily fooled into reading structure into chaos, reading meaning into 
nonsense. This accounts for the popularity of newspaper horoscopes and roadside psychics. This is not a flaw in the 
human mental capacity. Sensitivity to subtle patterns in our environment is extremely important to our ability to 
perceive, learn, and communicate. Clouds look like ships, and Rorschach blots seem like vignettes. How much different 
is interpreting non sequitur as whimsical conversation?  

Ned Block, a professor of philosophy at MIT (and by coincidence a referee at the competition, stationed with the 
judges) has argued that the Turing test is a sorely inadequate test of intelligence because it relies solely on the ability to 
fool people [3].  Certainly, it has been known since Weizenbaum's surprising experiences with ELIZA that a test 
based on fooling people is confoundingly simple to pass.  

People are even more easily fooled when their ability to detect fooling is explicitly vitiated, for instance, by a 
prohibition against using ``trickery or guile''.  When I asked Mr. Weintraub during the post-contest press conference 
how he himself would have unmasked his program, his response - typing gibberish in to see if the program spat it back 
verbatim at a later time a la ELIZA - was certainly outside the established rules. In fact, the referees had discussed that 
very technique the previous night at a meeting with the prize committee to calibrate our collective understanding of the 
rules. I pointed out to Mr. Weintraub that his response fell under the ``trickery and guile'' prohibition, and he took 
another stab at the question. His second attempt to specify a winning strategy against his program succumbed to the 
same problem. (It involved repeating questions multiple times.)  

Weintraub's problem in answering the question points to the craftiness of his solution to the Loebner prize puzzle. His 
entry is unfalsifiable independent of its performance and solely on the basis of the choice of topic. As almost everyone 
has noted who was familiar with the rules, whimsical conversation is not in fact a topic but a style of conversation (at 
least as practiced by Weintraub's program). And whimsical conversation in the mold of Weintraub's program is 
essentially nonsense conversation, a series of non sequiturs. Thus, when Weintraub's program is unresponsive, fails to 
make any sense, or shows a reckless abandonment of linguistic normalcy, it, unlike its competitor programs, is 
operating as advertised. It is being ``whimsical''. At those times when, by happenstance, the program trips over an 
especially suggestive response, a judge can grab at it as the real article. (The strategy is reminiscent of that used by the 
program Racter to create ``free verse'' poetry, another unfalsifiable genre.) Weintraub's strategy was an artful dodge of 
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the competition rules. He had found a loophole and exploited it elegantly. I for one believe that, in so doing, he heartily 
deserved to win.  

We might call this winning strategy ``PARRY's finesse'',  after Kenneth Colby's previously mentioned PARRY 
program [4]. PARRY was designed to engage in a dialogue in the role of a paranoid patient. The program was perhaps 
the first to be subject to an actual controlled experiment modeled on the Turing test [5], in which psychiatrists were 
given transcripts of electronically mediated dialogues with PARRY and with actual paranoids and were asked to pick 
out the simulated patient from the real. The fact that the expert judges, the psychiatrists, did no better than chance, has 
been credited to the fact that unresponsiveness and non sequitur are typical behaviors of paranoids. Joseph 
Weizenbaum's response to the experiment - in the form of his own model of a deviant mentality - parodies PARRY's 
finesse succinctly:   

The contribution here reported should lead to a full understanding of one of man's most troublesome disorders: infantile 
autism.... It responds exactly as does an autistic patient - that is, not at all.... This program has the advantage that it can 
be implemented on a plain typewriter not connected to a computer at all. [29]  

Post hoc thinking of this sort can go a long way to rationalizing the various misclassifications of the whimsical 
conversation program or, in the same vein, the program that talks at the level of a second-grader. (Who could fail to 
give a seven-year-old child the benefit of the doubt?) It leads to noting other insidious forms of scoring bias that crept 
into the competition. One possible source of such bias, for instance, follows from the technical problems that caused 
two of the confederates to be eliminated. Once the number of confederates had been reduced to the announced 
minimum, it became impossible for a judge to rationally place the demarcation line between ``humans'' and 
``computers'' in such a way as to rate a human as a computer without also rating a computer as a human. Of course, the 
converse was not true. This might have accounted for one or two more of the errors. Dr. Epstein points out in response 
to this observation that ``(1) Two of the ten judges drew the line after just one entry, in spite of our instructions. (2) 
Three of the 5 judges who mistook Weintraub's program for a person rated it above one or both confederates. (3) Two 
judges mistook a confederate for a computer. In fact, in two (and only two) cases could our instructions have forced the 
judge to mistake a computer for a person.'' (personal communication to Harry Lewis, 1992) The third point is, of course, 
irrelevant, the first hardly gratifying, the second accounted for by Weintraub's use of PARRY's finesse, and the final 
comment is exactly my point.  

But post hoc rationalization, like telling your boss off, may be enjoyable at the moment, but is, in the long run, 
ungratifying. The important questions do not involve microanalysis of the particular competition as run several months 
ago, but the larger questions of the purpose, design, and even existence of the Loebner prize itself.  

Why a Loebner Prize? 

There is a long history of argumentation in the philosophical literature opposing the appropriateness of the Turing test 
as a litmus test of intelligence. Certain arguments against the effectiveness of the test in answering questions about the 
intelligence of computers or the possibility of human thought center around the behaviorist nature of the test. 
Intelligence, it may be claimed, is not determinable simply by surface behavior. Variants of this argument have been 
given by Block [2], Gunderson [15], and Searle [24][23]. Others have suggested that the Turing test is not sufficient in 
that the behaviors under adjudication are too limited [10][15]. On the basis of such counterarguments, Moor [18] has 
argued for a drastically limited view of the Turing test, not as an operational definition of intelligence at all, but rather 
as a mode for accumulating evidence leading to an inductive argument for the intelligence of the machine. (See the 
reply by Stalker [25] and a later clarification by Moor [19] for further arguments.) Moor [20] provides a good 
introduction to these issues. French [11] provides a strong argument that as a sufficient condition for intelligence, the 
Turing test is so difficult as to be uninteresting. Nonetheless, none of these sorts of presumptive counterarguments to 
the use of a Turing test are the basis for the discussion in the remainder of this paper. The issue of whether an 
operational definition of intelligence is appropriate, and whether the particular definition codified in the Turing test is 
too narrow, though important questions, can be taken as resolved in favor of the Turing test for the purposes of the 
present discussion. Thus, we will side with the behaviorist interpretation favored by the organization administering the 
prize, the Cambridge Center for Behavioral Studies. Nonetheless, these arguments do provide another strong basis on 
which to question the appropriateness of the Loebner prize. A full discussion is, unfortunately, well beyond the scope of 
this paper, but readers are urged to consult the cited literature. Having sided, for the nonce, with the philosophical 
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appropriateness of Turing's design as a test of intelligent behavior, we turn to the question of whether the Loebner prize 
competition is itself an appropriate enterprise.  

Prizes for technological advances have existed before, and much can be learned by comparison with previous 
exemplars.  Just as humankind has dreamed of mimicking the human power of thought, so have we longed to possess 
the avian power of flight. Human-powered flight entered the mythology of the ancient Chinese and Romans, the designs 
of da Vinci, yet was only accomplished within the last generation as a direct result of a prize set up for the express 
purpose of promoting that technology. The Kremer prize, established in 1959 by British engineer and industrialist 
Henry Kremer, provided for an award of £5000 for the first human-powered vehicle to fly a specified half-mile figure-
eight course. It was awarded in 1977, less than twenty years later, to a team headed by Paul Macready, Jr., for a flight 
by Bryan Allen in the Gossamer Condor.  

The success of the Kremer prize depended on two factors.  

• Pursuing a purpose: The goals of the Kremer prize were clear. At the time of the institution of the prize, there 
were no active efforts to build human-powered aircraft. The goal of the prize was to provide an incentive to 
enter the field of human-powered flight. It was tremendously successful at this goal. By the time that the 
Gossamer Condor made its award-winning flight, Macready's team was in competition with several other 
teams with planes that were flying substantial distances solely under human power.  

• Pushing the envelope: The basic sciences underlying human-powered flight were, by 1959, well understood. 
These included aerodynamics, mechanics, anatomy and physiology, and materials technology. It was even 
possible for Robert Graham, an expert in the field of human-powered flight and a founding member of the 
Cranfield Man-Powered Aircraft Committee, to state at that time that ``Man could fly, if only someone would 
put up a prize for it.'' (Quoted by Grosser [][page 23]grosser.) Overcoming the human difficulties in building a 
team that had collective mastery of these various fields and the engineering difficulties in creatively combining 
them were astonishing accomplishments. Nonetheless, as it turned out, no new basic discoveries were required 
at the time of the founding of the Kremer prize to win it.  The task was just beyond the edge of the current 
technology. Unfortunately, since our ability to dream far outstrips our ability to build, the establishment of 
tests of ridiculous difficulty is not difficult to imagine. At a time when an award-winning human-powered 
flight was one of one meter at an altitude of 10 centimeters (the 1912 ), the Paris newspaper La Justice 
established a prize for the first nonstop human-powered flight from Paris to Versailles and back. (It was never 
won.)  

The history of human-powered flight indicates that only when the purpose of the prize is clear and the task is just 
beyond the edge of current technology is a prize an appropriate incentive. The Kremer prize is a prime example of a 
prize that meets these criteria. The Loebner prize is not.   

We turn first to the goals of the Loebner prize. It was, according to the formal statement in the competition application, 
``established...to further the scientific understanding of complex human behavior.'' Along these lines Dr. Loebner has 
been quoted as saying ``People had been discussing the Turing test; people had been discussing AI, but nobody was 
doing anything about it.'' [17] The several thousand members of the American Association for Artificial Intelligence 
may be surprised to learn that nobody is doing anything about it.  

Others have argued that the prize will serve to publicize the Turing test, thereby increasing the public's awareness and 
understanding of artificial intelligence. Increased public understanding of AI is certainly a laudable goal, especially 
since the regular appearance of superficial popularizations in the press serves more to mislead the public by alternately 
raising and dashing expectations than to inform it by cogent coverage of actual results. A flurry of the standard stories 
in the press like ``Computer fools half of human panel'' [13] and ``Test a breakthrough in artificial intelligence'' [16] 
was certainly one of the side effects of the Loebner prize competition, but perhaps not a laudable contribution.  

Overselling of AI by the media (and, occasionally, practitioners ) has, in its brief history, been a repeated and 
persistent problem, and the hubristic claims of the organizers of the Loebner prize that they are ``confident that within 
10 to 20 years a system will pass this electronic litmus test'' [27] perpetuates the hyperbole. Robert Epstein, in his recent 
article describing the event, its genesis, and his speculations as to its importance, constructs a standard claim of this 
sort:  
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Thinking computers will be a new race, a sentient companion to our own. When a computer finally passes the Turing 
Test, will we have the right to turn it off? Who should get the prize money - the programmer or the computer? Can we 
say that such a machine is ``self-aware''? Should we give it the right to vote? Should it pay taxes? If you doubt the 
significance of these issues, consider the possibility that someday soon you will have to argue them with a computer. 
[][emphasis in original]epstein  

Not surprisingly, the winner of the Loebner prize has jumped on the publicity bandwagon by taking out an 
advertisement pushing his program as the ``first to pass the Turing Test''.  Conversely, a prize whose execution 
convinces fellow scientists mistakenly that little progress has been made in a quarter century does little to promote the 
field. In summary, there is a difference between publicity and increased public understanding. Events of this sort - and 
the Loebner competition has been no exception - tend to generate the former rather than the latter.  

Dennett has hinted at a completely different goal for the Loebner prize. ``It is useful to have the demonstration of the 
particular foibles that human beings exhibit in 1991.... We won't learn much about AI from the Loebner prize for a long 
time, but we will learn some non-negligible things about social psychology, perhaps, in the meantime.'' (Dennett, 
personal communication) For instance, the competition might be justified ``as a proving ground for the environmental 
conditions necessary to permit the Turing test to someday occur. In other words, the Loebner competition can tell us 
what we need to know about how humans behave in computer mediated interactions.'' (Dranoff, personal 
communication) This line of teleology for the Loebner prize, that it serves not as a test of the abilities of the computers 
but of the psychologies of the various participants, has often been proposed informally. Such a ``conspiracy theory'' of 
the prize as a vast psychology experiment executed on unwitting and unconsenting adults is as unlikely as it is 
disturbing. Of course, there is already an extensive literature on how humans behave in computer-mediated interactions, 
and the Loebner competition is not likely to contribute to it; it was not designed or executed as a controlled scientific 
experiment, nor was that its apparent intention, despite the hopes of Dennett and Dranoff that firm conclusions in 
psychology might be gleaned from it.  

Thus, it is difficult to imagine a clear scientific goal that the Loebner prize might satisfy. Turing's test as originally 
defined, on the other hand had a clear goal, to serve as a sufficient condition for demonstrating that a human artifact 
exhibited intelligent behavior. Even this goal is lost in the Loebner prize competition. By limiting the test, it no longer 
serves its original purpose (and arguably no purpose at all), as Turing's syllogism fails.  It is questionable whether the 
notion of a Turing test limited in the ways specified by the Loebner prize committee is even a coherent one. The prize 
committee spent some time with the referees attempting to explicate the notion of ``natural conversation without 
trickery or guile''. It was suggested that a criterion be used as to whether you might say the utterance in conversation 
with a stranger seated next to you on an airplane. For instance, what might a competition judge legitimately ask on the 
topic of Washington, DC? Certainly, the question ``Are there any zoos in Washington?'' is the kind of thing you might 
ask a stranger when flying to the capital for the first time, whereas ``Is Washington bigger than a breadbasket?'' is just 
as certainly a trick question. What about ``Is there much crime in Washington?'' Undoubtedly acceptable. ``Are there 
any dogs in Washington?'' An odd question for an airplane conversation. ``Are there many dogs in Washington?'' 
Sounds better. ``Are there many marmosets in Washington?'' Odd. ``Are there many marmosets in the Washington 
zoo?'' Okay again. The exegesis of such examples begins to sound like arguments about angels and sharp objects.  

Similar problems accrue to the notion of limiting the topic of discourse. Is the last question about Washington, DC or 
marmosets? (One of the referees in fact thought that this and similar questions should be ruled out as it was not strictly 
on the topic of the city alone.) How about ``Are the buildings in Washington very modern?'' Perhaps a question about 
architecture, as the following question surely is: ``Do you know any examples of neo-Georgian architecture in 
Washington?'' Are culinary topics ruled out, as in ``What foods is our nation's capital best known for?'' Such issues are 
not idle in the context of the Loebner competition. Cynthia Clay, the Shakespeare expert, was asked why Mario Cuomo 
has been referred to recently as ``Hamlet on the Hudson''. The question caused much consternation among the referees 
peering over Ms. Clay's shoulder. Her response was ``His brooding'' after which she coolly changed the topic back to 
Shakespeare. Or had it ever left?  

The reason that Turing chose natural language as the behavior definitional of human intelligence is exactly its open-
ended, free-wheeling nature. ``The question and answer method seems to be suitable for introducing almost any of the 
fields of human endeavor that we wish to include.'' [page 435]turing-mind In attempting to limit the task of the 
contestants through limiting the domain alone, the prize committee succeeded in doing neither.  
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The distinction between domain and task is crucial. Finance is a domain, but not a task; withdrawing money from a 
bank account is a task, one that is achievable through both human and computer intermediaries these days; taking 
dictation of a funds-transfer request is a task that only humans can currently undertake with reliability. Had Babbage 
limited his differential analyzer to multiply only even numbers, the design would have been no more successful. This is 
a limitation of domain that does not yield a concomitant limitation in task.  

It is well understood in the field that natural-language systems must be tested using a constrained task. Currently, 
standard limited tasks can be found in evaluation of natural-language database retrieval systems (like withdrawing 
money from a bank account on the basis of a natural-language request) and speech recognition systems (like 
transcribing a spoken funds-transfer request). The tasks, typically undertaken with limited vocabulary, are easily 
quantifiable along several dimensions (for example, technical notions of precision, recall, overgeneration, perplexity) 
independently of the subjective judgments of lay judges. In addition, they can be adjusted to sit just at the edge of 
technology (a topic we return to below) unlike the Turing test itself. The natural-language-processing research 
community has used such tests for some time now, and there has been increased interest in issues of evaluation of 
systems (primarily at the behest of funding agencies) over the last few years; whole conferences have been devoted to 
the subject (see, for instance, the report by Neal and Walter [21]).   

In summary, the Loebner prize competition neither satisfies its own avowed goals, nor the original goals of Alan 
Turing. In fact, it is hard to imagine a scientific goal that establishment of the Loebner prize provides a better route to 
than would be provided by other uses of Dr. Loebner's $1500, his $100,000 promissory note, and the $80,000 in 
ancillary grants from the National Science Foundation and the Sloan Foundation. (Nonscientific goals are much easier 
to imagine, of course.)  

Now to the second criterion for an appropriate technology prize, that the task be just beyond the edge of technology. 
Imagine that a prize for human-powered flight were set up when the basic science of the time was far too impoverished 
for such an enterprise, say, in da Vinci's era. The da Vinci prize, we shall imagine, is constituted in 1492 and is to be 
awarded to the highest human-powered flight. Like the Loebner prize, a competition is held every year and a prize must 
be awarded each time it is held. The first da Vinci competition is won by a clever fellow with big springs on his shoes. 
Since the next competition is only one year away (no time to invent the airfoil), the optimal strategy is universally 
observed by potential contestants to involve building a bigger pair of springs. Twenty-five years later, the head of the 
prize committee announces that little progress has been made in human-powered flight since the first round of the prize 
as everyone is still manufacturing springs.   

Of course, a lot of progress had been made in human-powered flight in those twenty-five years. Da Vinci himself was 
studying human physiology and anatomy and the flight of birds, and - although his own work directly on the topic of 
human-powered flight, ornithopter design, was essentially meritless beyond its decorative qualities - the apparently 
tangential work was, in the long run, pertinent to the technologies that would eventually enable the Gossamer Condor to 
be constructed. (See, e.g., Gibbs-Smith [12].) However, over that period, and indeed at every point during the following 
four centuries, the kind of progress that needed to get made to solve the problem was not directly observable at that 
time in improvement in solutions to the problem, the kind of improvement that might be observable in an annual 
contest. Nonetheless, tremendous scientific progress was made between the fifteenth and twentieth centuries. The 
Gossamer Condor and the digital computer are two outgrowths of this progress.  

The field of artificial intelligence is in that kind of state.  The AI problem, like the problem of human-powered flight 
in the Renaissance, is only addressed directly and dismissed as imminently solvable by those who underestimate its 
magnitude. Progress on restricted tasks in limited domains is well documented in the literature on applications of 
artificial intelligence. But progress on the underlying science that has been made in the last twenty-five years, important 
though it is, is not of the type that allows incremental advantage to be demonstrated on the big problem, the full-blown 
Turing test, nor should this be seen as a failing of a field addressing a problem of the scope and magnitude of human 
intelligence. (And like all scientific endeavors, a lot of time can be spent on fruitless avenues of attack; ELIZA, as a 
discipline for natural-language processing, was such a fruitless avenue. It was quite fruitful in other areas, however, as 
cogently argued by Weizenbaum himself.) Indeed, one aspect of the progress made in research on natural-language 
processing is the appreciation for its complexity, which led to the dearth of entrants from the artificial intelligence 
community - the realization that time spent on winning the Loebner prize is not time spent furthering the field.  
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Twenty-five years of progress in the fields associated with the Turing test - artificial intelligence, computational 
linguistics, and natural-language processing - cannot be summarized in a single program, but is captured in the many 
small results, some of which, some day, at an unpredictable time in the future, may lead to a dramatic demonstration of 
apparently intelligent artificial behavior. To expect more is hubris. What is needed is not more work on solving the 
Turing test, as promoted by Dr. Loebner, but more work on the basic research issues involved in understanding 
intelligent behavior. The parlor games can be saved for later.  

Alternatives to the Loebner Prize 

Given that the Loebner prize, as constituted, is at best a diversion of effort and attention and at worst a disparagement of 
the scientific community, what might a better alternative use of Dr. Loebner's largesse be? The goal of furthering the 
scientific understanding of complex human behavior is no less laudable now than it was before the competition, but 
clearly, a direct assault on a valid test of intelligent behavior is out of the question for a long time; even the prize 
committee well appreciates that. Thus, any award or prize based on a behavioral test must use a limited task and 
domain, so that the envelope of technology is pushed, not ignored. The efforts of the Loebner prize committee to design 
such a test have failed in that the test that they developed rewards cheap tricks like parrying and insertion of random 
typing errors. This is an (indubitably predictable) lesson of the 1991 Loebner prize competition.  

This problem is a general one: Any behavioral test that is sufficiently constrained for our current technology must so 
limit the task and domain as to render the test scientifically uninteresting. Adjusting the particulars of the Loebner 
competition rules will not help. By way of example, many years of effort have gone into the design of the tests of 
natural-language-processing systems used at the annual DARPA-sponsored Message Understanding Conferences. The 
trend among entrants over the last several conferences has been toward less and less sophisticated natural-language-
processing techniques, concentrating instead on engineering tricks oriented to the exigencies of the restricted task - 
keyword-spotting, template-matching, and similar methods. In short, this is because such limited tests are better 
addressed in the near term by engineering (building bigger springs) than science (discovering the airfoil). Behavioral 
tests of intelligence are either too hard for a prize or too rewarding of incidentals.  

At this stage, objective behavioral tests must give way to subjective evaluative ones. A more appropriate way to reward 
novel, potentially breakthrough-inducing efforts toward the eventual goal of mimicking intelligent behavior would be to 
institute a prize for just such efforts, on the model of the Nobel prizes, ACM's Turing award, and similar subjectively 
determined awards. Rather than awarding lifelong achievement or past accomplishments, however, the prize could be 
awarded for particular discoveries, regardless of field, that the committee determined were of sufficient originality, 
import, and technical merit and that were deemed contributory to Turing's goal (even though they may provide no 
incremental edge in a current-day Turing test). To avoid rapt obeisance to AI conventional wisdom, the awards 
committee would include eminent thinkers from a wide range of related fields (much as the current Loebner prize 
committee does) but to ensure technical fidelity, a nominating committee of researchers from the pertinent technical 
fields should verify purported results before passing them on for consideration. In order to prevent degrading of the 
imprimatur of the reconstructed Loebner prize, it would be awarded on an occasional basis, only when a sufficiently 
deserving new result, idea, or development presented itself. I am not ostentatious enough to provide examples that I 
believe would be appropriate for such an award; I am sure that the reader can imagine one or two.   

As the years elapsed, and the speculations of this Loebner prize committee as documented in their past decisions began 
to prove perspicacious, the Loebner prize might grow in stature to that of the highly sought prizes of other scientific 
areas, and so provide a tremendous motivation for innovative ideas in the quest for an artificial intelligence.  

Postscript 

The Second Annual Loebner Prize Competition was held at the Cambridge Center for Behavioral Studies on December 
15, 1992. The number of computer entrants had decreased from six to three, with Joseph Weintraub's program, 
complete with the winning strategy from the previous year's competition, taking first prize once again, this time under 
the purported topic ``men vs. women''. Bigger springs had prevailed.  
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FEATURES 
3-axis sensing 
Small, low-profile package 

4 mm × 4 mm × 1.45 mm LFCSP 
Low power 

200 μA at VS = 2.0 V (typical) 
Single-supply operation 

2.0 V to 3.6 V 
10,000 g shock survival 
Excellent temperature stability 
BW adjustment with a single capacitor per axis 
RoHS/WEEE lead-free compliant 

 
APPLICATIONS 
Cost-sensitive, low power, motion- and tilt-sensing 
applications 

Mobile devices 
Gaming systems 
Disk drive protection 
Image stabilization 
Sports and health devices 

GENERAL DESCRIPTION 

The ADXL330 is a small, thin, low power, complete three axis 
accelerometer with signal conditioned voltage outputs, all 
on a single monolithic IC. The product measures acceleration 
with a minimum full-scale range of ±3 g. It can measure the 
static acceleration of gravity in tilt-sensing applications, as well 
as dynamic acceleration resulting from motion, shock, or 
vibration.  

The user selects the bandwidth of the accelerometer using the 
CX, CY, and CZ capacitors at the XOUT, YOUT, and ZOUT pins. 
Bandwidths can be selected to suit the application, with a 
range of 0.5 Hz to 1,600 Hz for X and Y axes, and a range of 
0.5 Hz to 550 Hz for the Z axis. 

The ADXL330 is available in a small, low-profile, 4 mm × 4 mm 
× 1.45 mm, 16-lead, plastic lead frame chip scale package 
(LFCSP_LQ). 
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SPECIFICATIONS 
TA = 25°C, VS = 3 V, CX = CY = CZ = 0.1 μF, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications are 
guaranteed. Typical specifications are not guaranteed. 

Table 1.  
Parameter Conditions Min Typ Max Unit 
SENSOR INPUT Each axis     

Measurement Range  ±3 ±3.6  g 

Nonlinearity % of full scale  ±0.3  % 
Package Alignment Error   ±1  Degrees 
Inter-Axis Alignment Error   ±0.1  Degrees 
Cross Axis Sensitivity1   ±1  % 

SENSITIVITY (RATIOMETRIC)2 Each axis     
Sensitivity at XOUT, YOUT, ZOUT VS = 3 V 270 300 330 mV/g 
Sensitivity Change Due to Temperature3 VS = 3 V   ±0.015  %/°C 

ZERO g BIAS LEVEL (RATIOMETRIC) Each axis     
0 g Voltage at XOUT, YOUT, ZOUT VS = 3 V 1.2 1.5 1.8 V 
0 g Offset vs. Temperature   ±1  mg/°C 

NOISE PERFORMANCE      
Noise Density XOUT, YOUT   280  μg/√Hz rms 
Noise Density ZOUT   350  μg/√Hz rms 

FREQUENCY RESPONSE4      
Bandwidth XOUT, YOUT

5 No external filter  1600  Hz 

Bandwidth ZOUT
5 No external filter  550  Hz 

RFILT Tolerance   32 ± 15%  kΩ 
Sensor Resonant Frequency   5.5  kHz 

SELF-TEST6      
Logic Input Low   +0.6  V 
Logic Input High   +2.4  V 

ST Actuation Current   +60  μA 
Output Change at XOUT Self-test 0 to 1  −150  mV 
Output Change at YOUT Self-test 0 to 1  +150  mV 
Output Change at ZOUT Self-test 0 to 1  −60  mV 

OUTPUT AMPLIFIER      
Output Swing Low No load  0.1  V 
Output Swing High No load  2.8  V 

POWER SUPPLY      
Operating Voltage Range  2.0  3.6 V 
Supply Current VS = 3 V  320  μA 

Turn-On Time7 No external filter  1  ms 
TEMPERATURE      

Operating Temperature Range  −25  +70 °C 
 
1 Defined as coupling between any two axes. 
2 Sensitivity is essentially ratiometric to VS.  
3 Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature. 
4 Actual frequency response controlled by user-supplied external filter capacitors (CX, CY, CZ). 
5 Bandwidth with external capacitors = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.003 μF, bandwidth = 1.6 kHz. For CZ = 0.01 μF, bandwidth = 500 Hz. For CX, CY, CZ = 10 μF, 

bandwidth = 0.5 Hz.  
6 Self-test response changes cubically with VS. 
7 Turn-on time is dependent on CX, CY, CZ and is approximately 160 × CX or CY or CZ + 1 ms, where CX, CY, CZ are in μF.  
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ABSOLUTE MAXIMUM RATINGS
Table 2.  
Parameter Rating 
Acceleration (Any Axis, Unpowered) 10,000 g 
Acceleration (Any Axis, Powered) 10,000 g 
VS −0.3 V to +7.0 V 
All Other Pins (COM − 0.3 V) to (VS + 0.3 V) 
Output Short-Circuit Duration  

(Any Pin to Common) 
Indefinite 

Temperature Range (Powered) −55°C to +125°C 
Temperature Range (Storage) −65°C to +150°C 

 

Stresses above those listed under Absolute Maximum Ratings 
may cause permanent damage to the device. This is a stress 
rating only; functional operation of the device at these or any 
other conditions above those indicated in the operational 
section of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 
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Figure 2. Recommended Soldering Profile 

Table 3. Recommended Soldering Profile  
Profile Feature Sn63/Pb37 Pb-Free 
Average Ramp Rate (TL to TP) 3°C/s max  3°C/s max 
Preheat   

Minimum Temperature (TSMIN) 100°C 150°C 
Maximum Temperature (TSMAX) 150°C 200°C 
Time (TSMIN to TSMAX), tS 60 s to 120 s 60 s to 180 s 

TSMAX to TL   
Ramp-Up Rate 3°C/s max 3°C/s max 

Time Maintained Above Liquidous (TL)   
Liquidous Temperature (TL) 183°C 217°C 
Time (tL) 60 s to 150 s 60 s to 150 s 

Peak Temperature (TP) 240°C + 0°C/−5°C 260°C + 0°C/−5°C 
Time within 5°C of Actual Peak Temperature (tP) 10 s to 30 s 20 s to 40 s 
Ramp-Down Rate 6°C/s max  6°C/s max 
Time 25°C to Peak Temperature 6 minutes max 8 minutes max 

 

ESD CAUTION 
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the 
human body and test equipment and can discharge without detection. Although this product features 
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy 
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance 
degradation or loss of functionality.  
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PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 
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Figure 3. Pin Configuration 
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Figure 4. Recommended PCB Layout 

 

Table 4. Pin Function Descriptions 
Pin No. Mnemonic Description 
1 NC No Connect  
2 ST Self-Test 
3 COM Common 
4 NC No Connect 
5 COM Common 
6 COM Common 
7 COM Common 
8 ZOUT Z Channel Output 
9 NC No Connect 
10 YOUT Y Channel Output 
11 NC No Connect 
12 XOUT X Channel Output 
13 NC No Connect 
14 VS Supply Voltage (2.0 V to 3.6 V) 
15 VS Supply Voltage (2.0 V to 3.6 V) 
16 NC No Connect 
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TYPICAL PERFORMANCE CHARACTERISTICS 
N > 1000 for all typical performance plots, unless otherwise noted. 

35

0

5

10

15

20

25

30

1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58

%
 O

F 
PO

PU
LA

TI
O

N

OUTPUT (V)

05
67

7-
00

3

 
Figure 5. X-Axis Zero g Bias at 25°C, VS = 3 V 
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Figure 6. Y-Axis Zero g Bias at 25°C, VS = 3 V 
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Figure 7. Z-Axis Zero g Bias at 25°C, VS = 3 V 
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Figure 8. X-Axis Zero g Bias at 25°C, VS = 2 V 
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Figure 9. Y-Axis Zero g Bias at 25°C, VS = 2 V 
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Figure 10. Z-Axis Zero g Bias at 25°C, VS = 2 V 
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Figure 11. X-Axis Zero g Bias Temperature Coefficient, VS = 3 V 
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Figure 12. Y-Axis Zero g Bias Temperature Coefficient, VS = 3 V 
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Figure 13. Z-Axis Zero g Bias Temperature Coefficient, VS = 3 V 
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Figure 14. X-Axis Zero g Bias vs. Temperature—8 Parts Soldered to PCB 
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Figure 15. Y-Axis Zero g Bias vs. Temperature—8 Parts Soldered to PCB 
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Figure 16. Z-Axis Zero g Bias vs. Temperature—8 Parts Soldered to PCB 
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Figure 17. X-Axis Sensitivity at 25°C, VS = 3 V 
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Figure 18. Y-Axis Sensitivity at 25°C, VS = 3 V 
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Figure 19. Z-Axis Sensitivity at 25°C, VS = 3 V 
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Figure 20. X-Axis Sensitivity at 25°C, VS = 2 V 
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Figure 21. Y-Axis Sensitivity at 25°C, VS = 2 V 
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Figure 22. Z-Axis Sensitivity at 25°C, VS = 2 V 
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Figure 23. X-Axis Sensitivity Drift Over Temperature, VS = 3 V 
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Figure 24. Y-Axis Sensitivity Drift Over Temperature, VS = 3 V 
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Figure 25. Z-Axis Sensitivity Drift Over Temperature, VS = 3 V 
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Figure 26. X-Axis Sensitivity vs. Temperature 

8 Parts Soldered to PCB, VS = 3 V 
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Figure 27. Y-Axis Sensitivity vs. Temperature 

8 Parts Soldered to PCB, VS = 3 V 
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Figure 28. Z-Axis Sensitivity vs. Temperature 

8 Parts Soldered to PCB, VS = 3 V 
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Figure 29. Typical Current Consumption vs. Supply Voltage 
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Figure 30. Typical Turn-On Time—CX, CY, CZ = 0.0047 μF, VS = 3 V  
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THEORY OF OPERATION 
The ADXL330 is a complete 3-axis acceleration measurement 
system on a single monolithic IC. The ADXL330 has a measure-
ment range of ±3 g minimum. It contains a polysilicon surface 
micromachined sensor and signal conditioning circuitry to 
implement an open-loop acceleration measurement architecture. 
The output signals are analog voltages that are proportional to 
acceleration. The accelerometer can measure the static accelera-
tion of gravity in tilt sensing applications as well as dynamic 
acceleration resulting from motion, shock, or vibration. 

The sensor is a polysilicon surface micromachined structure 
built on top of a silicon wafer. Polysilicon springs suspend the 
structure over the surface of the wafer and provide a resistance 
against acceleration forces. Deflection of the structure is meas-
ured using a differential capacitor that consists of independent 
fixed plates and plates attached to the moving mass. The fixed 
plates are driven by 180° out-of-phase square waves. Acceleration 
deflects the moving mass and unbalances the differential 
capacitor resulting in a sensor output whose amplitude is 
proportional to acceleration. Phase-sensitive demodulation 
techniques are then used to determine the magnitude and 
direction of the acceleration. 

The demodulator output is amplified and brought off-chip 
through a 32 kΩ resistor. The user then sets the signal band-
width of the device by adding a capacitor. This filtering improves 
measurement resolution and helps prevent aliasing. 

MECHANICAL SENSOR 
The ADXL330 uses a single structure for sensing the X, Y, and  
Z axes. As a result, the three axes sense directions are highly 
orthogonal with little cross axis sensitivity. Mechanical mis-
alignment of the sensor die to the package is the chief source  
of cross axis sensitivity. Mechanical misalignment can, of 
course, be calibrated out at the system level. 

PERFORMANCE 
Rather than using additional temperature compensation 
circuitry, innovative design techniques ensure high 
performance is built-in to the ADXL330. As a result, there is 
neither quantization error nor nonmonotonic behavior, and 
temperature hysteresis is very low (typically less than 3 mg over 
the −25°C to +70°C temperature range).  

Figure 14, Figure 15, and Figure 16 show the zero g output 
performance of eight parts (X-, Y-, and Z-axis) soldered to a 
PCB over a −25°C to +70°C temperature range. 

Figure 26, Figure 27, and Figure 28 demonstrate the typical 
sensitivity shift over temperature for supply voltages of 3 V. This 
is typically better than ±1% over the −25°C to +70°C 
temperature range. 
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APPLICATIONS 
POWER SUPPLY DECOUPLING 
For most applications, a single 0.1 μF capacitor, CDC, placed 
close to the ADXL330 supply pins adequately decouples the 
accelerometer from noise on the power supply. However, in 
applications where noise is present at the 50 kHz internal clock 
frequency (or any harmonic thereof), additional care in power 
supply bypassing is required as this noise can cause errors in 
acceleration measurement. If additional decoupling is needed,  
a 100 Ω (or smaller) resistor or ferrite bead can be inserted in 
the supply line. Additionally, a larger bulk bypass capacitor 
(1 μF or greater) can be added in parallel to CDC. Ensure that  
the connection from the ADXL330 ground to the power supply 
ground is low impedance because noise transmitted through 
ground has a similar effect as noise transmitted through VS. 

SETTING THE BANDWIDTH USING CX, CY, AND CZ 
The ADXL330 has provisions for band limiting the XOUT, YOUT, 
and ZOUT pins. Capacitors must be added at these pins to 
implement low-pass filtering for antialiasing and noise 
reduction. The equation for the 3 dB bandwidth is 

F−3 dB = 1/(2π(32 kΩ) × C(X, Y, Z)) 

or more simply  

F–3 dB = 5 μF/C(X, Y, Z) 

The tolerance of the internal resistor (RFILT) typically varies as 
much as ±15% of its nominal value (32 kΩ), and the bandwidth 
varies accordingly. A minimum capacitance of 0.0047 μF for CX, 
CY, and CZ is recommended in all cases. 

Table 5. Filter Capacitor Selection, CX, CY, and CZ 
Bandwidth (Hz) Capacitor (μF) 
1 4.7 
10 0.47 
50 0.10 
100 0.05 
200 0.027 
500 0.01 

SELF-TEST 
The ST pin controls the self-test feature. When this pin is set to 
VS, an electrostatic force is exerted on the accelerometer beam. 
The resulting movement of the beam allows the user to test if 
the accelerometer is functional. The typical change in output is 
−500 mg (corresponding to −150 mV) in the X-axis, 500 mg (or 
150 mV) on the Y-axis, and −200 mg (or −60 mV) on the Z-axis. 
This ST pin may be left open circuit or connected to common 
(COM) in normal use. 

Never expose the ST pin to voltages greater than VS + 0.3 V. If 
this cannot be guaranteed due to the system design (for 

instance, if there are multiple supply voltages), then a low VF 
clamping diode between ST and VS is recommended. 

DESIGN TRADE-OFFS FOR SELECTING FILTER 
CHARACTERISTICS: THE NOISE/BW TRADE-OFF 
The selected accelerometer bandwidth ultimately determines 
the measurement resolution (smallest detectable acceleration). 
Filtering can be used to lower the noise floor to improve the 
resolution of the accelerometer. Resolution is dependent on the 
analog filter bandwidth at XOUT, YOUT, and ZOUT.  

The output of the ADXL330 has a typical bandwidth of greater 
than 500 Hz. The user must filter the signal at this point to limit 
aliasing errors. The analog bandwidth must be no more than 
half the analog-to-digital sampling frequency to minimize 
aliasing. The analog bandwidth can be further decreased to 
reduce noise and improve resolution. 

The ADXL330 noise has the characteristics of white Gaussian 
noise, which contributes equally at all frequencies and is 
described in terms of μg/√Hz (the noise is proportional to the 
square root of the accelerometer bandwidth). The user should 
limit bandwidth to the lowest frequency needed by the applica-
tion to maximize the resolution and dynamic range of the 
accelerometer. 

With the single-pole, roll-off characteristic, the typical noise of 
the ADXL330 is determined by 

)1.6( ××= BWDensityNoiseNoiserms  

Often, the peak value of the noise is desired. Peak-to-peak noise 
can only be estimated by statistical methods. Table 6 is useful 
for estimating the probabilities of exceeding various peak 
values, given the rms value. 

Table 6. Estimation of Peak-to-Peak Noise 

Peak-to-Peak Value 
% of Time that Noise Exceeds 
Nominal Peak-to-Peak Value 

2 × rms 32 
4 × rms 4.6 
6 × rms 0.27 
8 × rms 0.006 

USE WITH OPERATING VOLTAGES OTHER THAN 3 V 
The ADXL330 is tested and specified at VS = 3 V; however, it 
can be powered with VS as low as 2 V or as high as 3.6 V. Note 
that some performance parameters change as the supply voltage 
is varied. 
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The ADXL330 output is ratiometric, therefore, the output 
sensitivity (or scale factor) varies proportionally to the  
supply voltage. At VS = 3.6 V, the output sensitivity is  
typically 360 mV/g. At VS = 2 V, the output sensitivity is 
typically 195 mV/g. 

The zero g bias output is also ratiometric, so the zero g output is 
nominally equal to VS/2 at all supply voltages. 

The output noise is not ratiometric but is absolute in volts; 
therefore, the noise density decreases as the supply voltage 
increases. This is because the scale factor (mV/g) increases 
while the noise voltage remains constant. At VS = 3.6 V, the  
X- and Y-axis noise density is typically 230 μg/√Hz, while at  
VS = 2 V, the X- and Y-axis noise density is typically 350 μg/√Hz. 

Self-test response in g is roughly proportional to the square of 
the supply voltage. However, when ratiometricity of sensitivity 
is factored in with supply voltage, the self-test response in volts 
is roughly proportional to the cube of the supply voltage. For 
example, at VS = 3.6 V, the self-test response for the ADXL330 is 
approximately −275 mV for the X-axis, +275 mV for the Y-axis, 
and −100 mV for the Z-axis.  

At VS = 2 V, the self-test response is approximately −60 mV for 
the X-axis, +60 mV for the Y-axis, and −25 mV for the Z-axis. 

The supply current decreases as the supply voltage decreases. 
Typical current consumption at VS = 3.6 V is 375 μA, and 
typical current consumption at VS = 2 V is 200 μA. 

AXES OF ACCELERATION SENSITIVITY 
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Figure 31. Axes of Acceleration Sensitivity, Corresponding Output Voltage 

Increases When Accelerated Along the Sensitive Axis
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Figure 32. Output Response vs. Orientation to Gravity 
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OUTLINE DIMENSIONS 

16

5

13

8

9

12 1

4
0.65 BSC

2.43
1.75 SQ
1.08

1.95 BSC

0.20 MIN PIN 1
INDICATOR

BOTTOM
VIEW

0.20 MIN

SEATING
PLANE

1.50
1.45
1.40

PIN 1
INDICATOR TOP

VIEW

COPLANARITY
0.05

0.05 MAX
0.02 NOM

0.35
0.30
0.25

0.55
0.50
0.45

4.15
4.00 SQ
3.85

 
Figure 33. 16-Lead Lead Frame Chip Scale Package [LFCSP_LQ] 

4 mm × 4 mm Body, Thick Quad 
(CP-16-5) 

Dimensions shown in millimeters 

ORDERING GUIDE 
Model Measurement Range Specified Voltage  Temperature Range Package Description Package Option 
ADXL330KCPZ1 ±3 g 3 V −25°C to +70°C 16-Lead LFCSP_LQ CP-16-5 
ADXL330KCPZ–RL1 ±3 g 3 V −25°C to +70°C 16-Lead LFCSP_LQ CP-16-5 
EVAL-ADXL330     Evaluation Board  
 
1 Z = Pb-free part. 
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LIS3L02AS4

December 2005 

1 Features
■ 2.4V TO 3.6V SINGLE SUPPLY OPERATION
■ LOW POWER CONSUMPTION
■ ±2g/±6g USER SELECTABLE FULL-SCALE
■ 0.5mg RESOLUTION OVER 100Hz 

BANDWIDTH
■ EMBEDDED SELF TEST AND POWER DOWN
■ OUTPUT VOLTAGE, OFFSET AND 

SENSITIVITY RATIOMETRIC TO THE 
SUPPLY VOLTAGE

■ HIGH SHOCK SURVIVABILITY
■ LEAD FREE AND ECOPACK COMPATIBLE

2 Description
The LIS3L02AS4 is a low-power three axes linear ac-
celerometer that includes a sensing element and an
IC interface able to take the information from the
sensing element and to provide an analog signal to
the external world. 
The sensing element, capable of detecting the accel-
eration, is manufactured using a dedicated process
developed by ST to produce inertial sensors and ac-
tuators in silicon.
The IC interface is manufactured using a standard
CMOS process that allows high level of integration to
design a dedicated circuit which is trimmed to better
match the sensing element characteristics.
The LIS3L02AS4 has a user selectable full scale of

±2g, ±6g and it is capable of measuring accelerations
over a bandwidth of 1.5KHz for all axes. The device
bandwidth may be reduced by using external capac-
itances. A self-test capability allows to check the me-
chanical and electrical signal path of the sensor. 
The LIS3L02AS4 is available in plastic SMD package
and it is specified over an extended temperature
range of -40°C to +85°C.
The LIS3L02AS4 belongs to a family of products suit-
able for a variety of applications:

– Mobile terminals
– Gaming and Virtual Reality input devices
– Free-fall detection for data protection
– Antitheft systems and Inertial Navigation
– Appliance and Robotics

MEMS INERTIAL SENSOR:
3-Axis - ±2g/±6g LINEAR ACCELEROMETER

Figure 2. Block Diagram
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Figure 1. Package

Table 1. Order Codes

Part Number Package Finishing

E-LIS3L02AS4 SO24 Tube

E-LIS3L02AS4TR SO24 Tape & Reel

SO24

Rev. 2
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Table 2. Pin Description

Figure 3. Pin Connection (Top view)

N° Pin Function

1 to 5 NC Internally not connected

6 GND 0V supply 

7 Vdd Power supply

8 Vouty Output Voltage

9 ST Self Test (Logic 0: normal mode; Logic 1: Self-test)

10 Voutx Output Voltage

11 PD Power Down (Logic 0: normal mode; Logic 1: Power-Down mode)

12 Voutz Output Voltage

13 FS Full Scale selection (Logic 0: 2g Full-scale; Logic 1: 6g Full-scale)

14-15 Reserved Leave unconnected or connect to Vdd

16 Reserved Connect to Vdd or ground

17 Reserved Leave unconnected or connect to Vdd

18 Reserved Leave unconnected or connect to ground

19 to 24 NC Internally not connected

NC

NC

NC

NC

NC

NC

Reserved

Reserved

Reserved

Reserved

Reserved

FS

NC

NC

NC

NC
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Table 3. Mechanical Characteristics1 

(Temperature range -40°C to +85°C). All the parameters are specified @ Vdd =3.3V, T=25°C unless oth-
erwise noted

Notes: 1. The product is factory calibrated at 3.3V. The device can be powered from 2.4V to 3.6V. Voff, So and Vt parameters will vary with
supply voltage.

2. Typical specifications are not guaranteed
3. Verified by wafer level test and measurement of initial offset and sensitivity
4. Zero-g level and sensitivity are essentially ratiometric to supply voltage
5. Guaranteed by design
6. Contribution to the measuring output of an inclination/acceleration along any perpendicular axis
7. “Self test output voltage change” is defined as Vout(Vst=Logic1)-Vout(Vst=Logic0) 
8. “Self test output voltage change” varies cubically with supply voltage
9. When full-scale is set to ±6g, “self-test output voltage change” is one third of the specified value.
10.Minimum resonance frequency Fres=1.5KHz. Sensor bandwidth=1/(2*π*110KΩ*Cload) with Cload>1nF.

Symbol Parameter Test Condition Min. Typ.2 Max. Unit

Ar Acceleration Range3 FS pin connected to GND ±1.8 ±2.0 g

FS pin connected to Vdd ±5.4 ±6.0 g

So Sensitivity4 Full-scale = 2g Vdd/5–10% Vdd/5 Vdd/5+10% V/g

Full-scale = 6g Vdd/15–10% Vdd/15 Vdd/15+10% V/g

SoDr Sensitivity Change Vs 
Temperature

Delta from +25°C ±0.01 %/°C

Voff Zero-g Level4 T = 25°C Vdd/2-10% Vdd/2 Vdd/2+10% V

OffDr Zero-g level Change 
Vs Temperature

Delta from +25°C ±1.1 mg/°C

NL Non Linearity5 Best fit straight line
Full-scale = 2g
X, Y axis

±0.3 ±1.5 % FS

Best fit straight line;
Full-scale = 2g
Z axis

±0.6 ±2 % FS

CrossAx Cross-Axis6 ±2 ±4 %

An Acceleration Noise 
Density

Vdd=3.3V;
Full-scale = 2g

50 µg/

Vt Self test Output 
Voltage Change7,8,9

T = 25°C
Vdd=3.3V
Full-scale = 2g
X axis

-20 -50 -100 mV

T = 25°C
Vdd=3.3V
Full-scale = 2g
Y axis

20 50 100 mV

T = 25°C
Vdd=3.3V
Full-scale = 2g
Z axis

20 50 100 mV

Fres Sensing Element 
Resonance 
Frequency10

all axes 1.5 KHz

Top Operating 
Temperature Range

-40 +85 °C

Wh Product Weight 0.6 gram

Hz
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Table 4. Electrical Characteristics1

(Temperature range -40°C to +85°C) All the parameters are specified @ Vdd =3.3V, T=25°C unless oth-
erwise noted

Notes: 1. The product is factory calibrated at 3.3V.
2. Typical specifications are not guaranteed
3. Minimum resonance frequency Fres=1.5kHz. Sensor bandwidth=1/(2*π*110KΩ*Cload) with Cload>1nF

3 Absolute Maximum Rating
Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device under these conditions is not implied.
Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 5. Absolute Maximum Rating

 

Symbol Parameter Test Condition Min. Typ.2 Max. Unit

Vdd Supply Voltage 2.4 3.3 3.6 V

Idd Supply Current mean value
PD pin connected 
to GND

0.85 1.5 mA

IddPdn Supply Current in Power 
Down Mode

rms value
PD pin connected 
to Vdd

2 5 µA

Vst Self Test Input Logic 0 level 0 0.8 V

Logic 1 level 2.2 Vdd V

Rout Output Impedance 80 110 140 kΩ
Cload Capacitive Load Drive3 320 pF

Ton Turn-On Time at exit from 
Power Down mode

Cload in µF 550*Cload+0.3 ms

Symbol Ratings Maximum Value Unit

Vdd Supply Voltage -0.3 to 7 V

Vin Input Voltage on any control pin (FS, PD, ST)  -0.3 to Vdd +0.3 V

APOW Acceleration (Any axis, Powered, Vdd=3.3V) 3000g for 0.5 ms

10000g for 0.1 ms

AUNP Acceleration (Any axis, Not powered) 3000g for 0.5 ms

10000g for 0.1 ms

TSTG Storage Temperature Range -40 to +125 °C

ESD Electrostatic Discharge Protection 2 (HBM) kV

200 (MM) V

1500 (CDM) V

This is an ESD sensitive device, improper handling can cause permanent damages to the part 

This is a Mechanical Shock sensitive device, improper handling can cause permanent damages to the part
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3.1 Terminology

3.1.1 Sensitivity

Describes the gain of the sensor and can be determined by applying 1g acceleration to it. As the sensor
can measure DC accelerations this can be done easily by pointing the axis of interest towards the center
of the earth, note the output value, rotate the sensor by 180 degrees (point to the sky) and note the output
value again thus applying ±1g acceleration to the sensor. Subtracting the larger output value from the
smaller one and dividing the result by 2 will give the actual sensitivity of the sensor. This value changes
very little over temperature (see sensitivity change vs. temperature) and also very little over time. The Sen-
sitivity Tolerance describes the range of Sensitivities of a large population of sensors.

3.1.2 Zero-g level

Describes the actual output signal if there is no acceleration present. A sensor in a steady state on an
horizontal surface will measure 0g in X axis and 0g in Y axis whereas the Z axis will measure +1g. The
output is ideally for a 3.3V powered sensor Vdd/2 = 1650mV. A deviation from ideal 0-g level (1650mV in
this case) is called Zero-g offset. Offset of precise MEMS sensors is to some extend a result of stress to
the sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit
board or exposing it to extensive mechanical stress. Offset changes little over temperature - see "Zero-g
Level Change vs. Temperature" - the Zero-g level of an individual sensor is very stable over lifetime. The
Zero-g level tolerance describes the range of zero-g levels of a population of sensors. 

3.1.3 Self Test

Self Test allows to test the mechanical and electric part of the sensor, allowing the seismic mass to be moved
by means of an electrostatic test-force. The Self Test function is off when the ST pin is connected to GND. When
the ST pin is tied at Vdd an actuation force is applied to the sensor, simulating a definite input acceleration. In
this case the sensor outputs will exhibit a voltage change in their DC levels which is related to the selected full
scale and depending on the Supply Voltage through the device sensitivity. When ST is activated, the device
output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and
by the electrostatic test-force. If the output signals change within the amplitude specified inside Table 3, than
the sensor is working properly and the parameters of the interface chip are within the defined specification.

3.1.4 Output impedance

Describes the resistor inside the output stage of each channel. This resistor is part of a filter consisting of
an external capacitor of at least 320pF and the internal resistor. Due to the high resistor level only small,
inexpensive external capacitors are needed to generate low corner frequencies. When interfacing with an
ADC it is important to use high input impedance input circuitries to avoid measurement errors. Note that
the minimum load capacitance forms a corner frequency beyond the resonance frequency of the sensor.
For a flat frequency response a corner frequency well below the resonance frequency is recommended.
In general the smallest possible bandwidth for an particular application should be chosen to get the best
results. 
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4 Functionality
The LIS3L02AS4 is a high performance, low-power, analog output three axes linear accelerometer packaged
in a SO24 package. The complete device includes a sensing element and an IC interface able to take the infor-
mation from the sensing element and to provide an analog signal to the external world.

4.1 Sensing element 

A proprietary process is used to create a surface micro-machined accelerometer. The technology allows to carry
out suspended silicon structures which are attached to the substrate in a few points called anchors and are free
to move in the direction of the sensed acceleration. To be compatible with the traditional packaging techniques
a cap is placed on top of the sensing element to avoid blocking the moving parts during the moulding phase of
the plastic encapsulation.

When an acceleration is applied to the sensor the proof mass displaces from its nominal position, causing an
imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a
voltage pulse applied to the sense capacitor.

At steady state the nominal value of the capacitors are few pF and when an acceleration is applied the maximum
variation of the capacitive load is up to 100fF. 

4.2 IC Interface

In order to increase robustness and immunity against external disturbances the complete signal processing
chain uses a fully differential structure. The final stage converts the differential signal into a single-ended one to
be compatible with the external world.

The signals of the sensing element are multiplexed and fed into a low-noise capacitive charge amplifier that im-
plements a Correlated Double Sampling (CDS) at its output to cancel the offset and the 1/f noise. The output
signal is de-multiplexed and transferred to three different S&Hs, one for each channel and made available to
the outside.

The low noise input amplifier operates at 200 kHz while the three S&Hs operate at a sampling frequency of 66
kHz. This allows a large oversampling ratio, which leads to in-band noise reduction and to an accurate output
waveform.

All the analog parameters (zero-g level, sensitivity and self-test) are ratiometric to the supply voltage. Increasing
or decreasing the supply voltage, the sensitivity and the offset will increase or decrease almost linearly. The self
test voltage change varies cubically with the supply voltage

4.3 Factory calibration

The IC interface is factory calibrated for Sensitivity (So) and Zero-g Level (Voff). The trimming values are stored
inside the device by a non volatile structure. Any time the device is turned on, the trimming parameters are
downloaded into the registers to be employed during the normal operation. This allows the user to employ the
device without further calibration.
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5 Application Hints

Figure 4. LIS3L02AS4 Electrical Connection

Power supply decoupling capacitors (100nF ceramic + 10µF Al) should be placed as near as possible to
the device (common design practice).

The LIS3L02AS4 allows to band limit Voutx, Vouty and Voutz through the use of external capacitors. The
re-commended frequency range spans from DC up to 1.5 KHz. In particular, capacitors must be added at
output pins to implement low-pass filtering for antialiasing and noise reduction. The equation for the cut-
off frequency ( ) of the external filters is:

Taking in account that the internal filtering resistor (Rout) has a nominal value equal to , the equa-
tion for the external filter cut-off frequency may be simplified as follows:

The tolerance of the internal resistor can vary typically of ±20% within its nominal value of 110kΩ; thus the
cut-off frequency will vary accordingly. A minimum capacitance of 320 pF for Cload(x, y, z) is required in
any case.

Vout Z

100nF

Cload z

LIS3L02AS4
10µF

Vdd

Vout X

GND

ST

GND GND

Cload x

Cload y

(top view)

Optional

Optional
Vout Y

Optional

PD

Digital signals

DIRECTION OF THE
DETECTABLE
ACCELERATIONS

FS Y

1

13

Z

XGND

ft

ft
1

2π Rout Cload x y z, ,( )⋅ ⋅
------------------------------------------------------------------------=

110kΩ

ft
1.45µF

Cload x y z, ,( )
-------------------------------------- Hz[ ]=
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Table 6. Filter Capacitor Selection, Cload (x,y,z). Capacitance Value Choose.

5.1 Soldering information

The SO24 package is lead free qualified for soldering heat resistance according to JEDEC J-STD-020C.

5.2 Output response vs orientation

Figure 5. Output response vs orientation

Figure 5 refers to LIS3L02AS4 device powered at 3.3V 

Cut-off frequency Capacitor value

1 Hz 1500nF

10 Hz 150nF

50 Hz 30 nF

100 Hz 15 nF

200 Hz 6.8 nF

500 Hz 3 nF

X=1.65V (0g)
Y=1.65V (0g)
Z=2.31V (+1g)

X=1.65V (0g)
Y=1.65V (0g)
Z=0.99V (-1g)

TOP VIEW

X=2.31V (+1g)
Y=1.65V (0g)

Earth’s Surface

X=0.99V (-1g)
Y=1.65V (0 g)

X=1.65V (0g)
Y=0.99V (-1g)

X=1.65V (0g)
Y=2.31V (+1g)

Z=1.65V (0g)

Z=1.65V (0g)

Z=1.65V (0g)

Z=1.65V (0g)

Top

Top

Bottom

Bottom
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6 Typical performance Characteristics

6.1 Mechanical Characteristics at 25°C.

Figure 6. X axis Zero g Level at 3.3V

Figure 7. Y axis Zero g Level at 3.3V

Figure 8. Z axis Zero g Level at 3.3V

Figure 9. X axis Sensitivity at 3.3V

Figure 10. Y axis Sensitivity at 3.3V

Figure 11. Z axis Sensitivity at 3.3V
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6.2 Mechanical Characteristics derived from measurement in the -40°C to +85°Ctemperature range

Figure 12. X axis Zero g Level Change Vs. 
Temperature

Figure 13. Y axis Zero g Level Change Vs. 
Temperature

Figure 14. Z axis Zero g Level Change Vs. 
Temperature

Figure 15. X axis Sensitivity Change Vs. 
Temperature

Figure 16. Y axis Sensitivity Change Vs. 
Temperature

Figure 17. Z axis Sensitivity Change Vs. 
Temperature
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6.3 Electrical Characteristics at 25°C

Figure 18. Noise density at 3.3V (X,Y axes)

Figure 19. Noise density at 3.3V (Z axis)

Figure 20. Current consumption at 3.3V

Figure 21. Current consumption in power 
down mode at 3.3V
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7 Package Information
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These pack-
ages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the
package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related
to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 22. SO24 Mechanical Data & Package Dimensions

OUTLINE AND
MECHANICAL DATA

DIM.
mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 2.35 2.65 0.093 0.104

A1 0.10 0.30 0.004 0.012

B 0.33 0.51 0.013 0.200

C 0.23 0.32 0.009 0.013

D (1) 15.20 15.60 0.598 0.614

E 7.40 7.60 0.291 0.299

e 1.27 0.050

H 10.0 10.65 0.394 0.419

h 0.25 0.75 0.010 0.030

L 0.40 1.27 0.016 0.050

k 0˚ (min.), 8˚ (max.)

ddd 0.10 0.004

(1) “D” dimension does not include mold flash, protusions or gate
burrs. Mold flash, protusions or gate burrs shall not exceed
0.15mm per side.

SO24

0070769 C

Weight: 0.60gr
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8 Revision History

Table 7. Revision History

Date Revision Description of Changes

February 2004 1 First issue

1-Dec-2005 2 Changed from Product preview to Datasheet maturity.
Added Typical performance Characteristics section.
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JMP

Accelerometers and Accelerometers and 
How they WorkHow they Work

• Contents summary
– Definition of Acceleration
– Technologies
– Terminology
– Effect of Tilt
– Typical applications
– Summary
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Acceleration FundamentalsAcceleration Fundamentals

• What is Acceleration?
– Definition: the time rate of

change of velocity
– A.K.A.: the time rate of change

of the time rate of change of 
distance

• What are the units?
– Acceleration is measured in (ft/s)/s or (m/s)/s

• What is a “g”?
– A “g” is a unit of acceleration equal to Earth’s gravity at sea level

• 32.2 ft/s2 or 9.81 m/s2

2

2

t
x

t
va

∂
∂

=
∂
∂

=



3

JMP

More Notes on AccelerationMore Notes on Acceleration

• What is the time rate of change of velocity?
– When plotted on a graph, velocity is the slopeslope of distance 

versus time
– Acceleration is the slopeslope of velocity versus time
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How to find velocity from distance traveled
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How to find acceleration from velocity
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Acceleration vs. Time

-45.000

-40.000

-35.000

-30.000

-25.000

-20.000

-15.000

-10.000

-5.000

0.000

5.000

10.000

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400

Time (seconds)

A
cc

el
er

at
io

n 
(m

et
er

s/
se

c^
2)

a(t=1.040) = -10 m/s2

a(t=0.960) = 0 m/s2



7

JMP

Acceleration in Human TermsAcceleration in Human Terms

• What are some “g” reference points?

Description “g” level
Earth’s gravity 1g
Passenger car in corner 2g
Bumps in road 2g
Indy car driver in corner 3g
Bobsled rider in corner 5g
Human unconsciousness 7g
Space shuttle 10g
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What’s the point?What’s the point?

• Why measure acceleration?
– Acceleration is a physical characteristic of a system.
– The measurement of acceleration is used as an input into some 

types of control systems.
– The control systems use the measured acceleration to correct for

changing dynamic conditions
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Common Types of AccelerometersCommon Types of Accelerometers

Sensor Category Key Technologies
• Capacitive -Metal beam or micromachined feature 

produces capacitance; change in 
capacitance related to acceleration

• Piezoelectric -Piezoelectric crystal mounted to mass –
voltage output converted to acceleration

• Piezoresistive -Beam or micromachined feature whose 
resistance changes with acceleration

• Hall Effect -Motion converted to electrical signal by 
sensing of changing magnetic fields

• Magnetoresistive -Material resistivity changes in presence of 
magnetic field

• Heat Transfer -Location of heated mass tracked during 
acceleration by sensing temperature 

•
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What Type of Acceleration Sensor What Type of Acceleration Sensor 
Does TI Produce and why?Does TI Produce and why?

• Capacitive Acceleration Sensor
– “CAS”

CAS
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Acceleration Sensor TerminologyAcceleration Sensor Terminology
(TI Convention)

• +1g: Output of the sensor with the base connector 
pointed up 

• 0g: Output of the sensor with the base connector 
horizontal

• -1g: Output of the sensor with the base connector pointed 
down 

• Linearity: The maximum deviation of the calibration 
curve from a straight line.

( )goutgoutgout VVVLinearity 1,1,0, 2
1

−+ +−=
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Acceleration Sensor TerminologyAcceleration Sensor Terminology

• Sensitivity: A measure of how much the output of a sensor 
changes as the input acceleration changes.  Measured in Volts/g

• Vcc: The voltage supplied to the input of the sensor

– 5.000 ± 0.005V for CAS device

• %Vcc: Readings are often represented as a % of the supply 
voltage.  This allows for correction due to supply voltage variances 
between readings.
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Example: Sensitivity & LinearityExample: Sensitivity & Linearity
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Acceleration Sensor TerminologyAcceleration Sensor Terminology

• Ratiometric: The output of the sensor changes with a change in 
the input voltage.

• Example 
At Vcc = 5.000V, Vout at 0g = 1.800V
In terms of %Vcc, this is 1.800Vout/5.000Vcc *100% = 36%Vcc

Now suppose the input voltage changes: Vcc = 5.010V.  
At 0g, the ratiometric device output is still 36% Vcc.

In terms of the output voltage, 36%Vcc * 5.010Vcc = 1.804Vout

• So a 0.010V change in Vcc will cause a 0.004V error in the 0g 
output if you do not evaluate the output as %Vcc
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Important Setup Requirements Important Setup Requirements 
for your CAS Devicefor your CAS Device

• Rigid Mounting
– Bees Wax
– Double Sided tape
– Bolt(s)

• No Loose Wires
– Loose wires can create false signals
– Secure wires firmly to mounting body

• Weight of Sensor
– Should be approximately an order of magnitude less than object 

being measured
• Example: CAS =  47g; accelerating object should be more than 470g

• Don’t drop the sensor!
– Extreme jarring accelerations can cause permanent errors in device 

output
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Effect of TiltEffect of Tilt

• DC response sensors measure tilt.  Mounting errors are 
therefore significant

• a 1o tilt in the 0g position creates an output error equivalent to a
10o tilt in the +1g or -1g positions

• 0g is the most sensitive to mounting errors



JMP

Why is device sensitive to Why is device sensitive to 
tilt in the 0g orientation?tilt in the 0g orientation?

0g Orientation

θ = 1° →
Gn = 1.7x10-2*G

θ

+1g Position

(-1g Position uses same equation) 

θ = 1° →  
Gn = 0.9998*G

θ

G
θ

Gn

Gx

G
Gn=G*Cos(θ)

g level going from 
1g to some % of 1g

θ

Gn

Gx

Gn = G*Sin(θ)

g level going 
from 0g to some 
value

Conclusion: at 0g orientation, change in 1Conclusion: at 0g orientation, change in 1°° tilt causes 57x tilt causes 57x 
bigger change in sensor output versus bigger change in sensor output versus --1g or +1g orientation1g or +1g orientation
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Effect of Tilt on DC AccelerometerEffect of Tilt on DC Accelerometer

CAS Output Voltage Change with Position
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Typical Accelerometer ApplicationsTypical Accelerometer Applications

• Tilt / Roll
• Vibration / “Rough-road” detection

– Can be used to isolate vibration of mechanical system from outside 
sources

• Vehicle skid detection
– Often used with systems that deploy “smart” braking to regain control of 

vehicle
• Impact detection

– To determine the severity of impact, or to log when an impact has 
occurred

• Input / feedback for active suspension control systems
– Keeps vehicle level
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SummarySummary

• Acceleration is a measure of how fast the speed of 
something is changing

• It is used as an input to control systems
• Sensor voltage output should be determined as a 

percentage of voltage input for consistency
• The device is sensitive to tilt in the 0g position

– 1o tilt in 0g = 10o of tilt in the +1g and -1g positions
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Huge advances in interface modalities are evident and imminent.This panel demon-
strates and explores the most interesting, promising, and clever of these modalities,
and their integration into exciting multimodal systems.

Because this is a gadget-intensive topic, the panel presents gadgets galore. Input
devices that can tell systems where users are looking, the gestures they are making,
the direction and content of their sounds and speech, and what and how they are
touching. Display devices that image directly onto the retina, high-resolution miniature
LCDs, and spatial sound generators. Some of these innovative transducers operate
both non-invasively and invisibly. No one should ever have to see a computer.The 
complexity should be suffused in the world around you.

Panelist perspectives are theoretical and pragmatic, incremental and radical; their
work is elegantly inspiring and often delightfully unconventional. All were formerly
considered visionaries, but now their visions are achievable, and many industries are
paying attention.They are seasoned practitioners with their own viewpoints. All are
articulate, and none are shy.

Michael Harris

When users talk about computers, they usually describe the interfaces - because, for
most users, the interface is the system.The most powerful force in shaping people’s
mental model of the nature of the beast is that which they see, feel, and hear. It
seemed to take forever for toggle-switch panels to evolve into today’s WIMPs,
although both are visual/motor-based controls. And switch panels were clearly more
haptically satisfying! Now, thanks to exponential increases in commonly available
computer power and versatility (and concomitant cost decreases), significant progress
in interface modalities and their affordability can be perceived.

While humans are adept at sensory integration and data fusion, computers are far
less so. It is clear (and probably has been since Glowflow in 1968) that multimodal
interaction is a seminal goal and that achieving it is a formidable challenge.
Computational power seems to be catching up with algorithmic understanding.

Interfaces to newborn technology are usually “close to the machine:” early automobiles
had spark advance levers, mixture adjustments, hand throttles, choke controls. As
automobiles have evolved, their affordability have moved “closer to the user:” speed,
stop, reverse. We’re tracking a similar evolution in human-computer interaction
space. Perhaps interfaces are finally growing up?  

Hiroshi Ishii  

Tangible Interfaces
People have developed sophisticated skills for sensing and manipulating their physical
environments. However, most of these skills are not employed by traditional graphical
user interfaces (GUIs).Tangible Bits, our vision of human-computer interaction, seeks
to build upon these skills by giving physical form to digital information, seamlessly
coupling the dual worlds of bits and atoms.

Guided by the Tangible Bits vision, we are designing “tangible user interfaces,” which
employ physical objects, surfaces, and spaces as tangible embodiments of digital infor-
mation.These include foreground interactions with graspable objects and augmented
surfaces that exploit the human senses of touch and kinesthesia. We are also exploring
background information displays that use “ambient media:” ambient light, sound, air-
flow, and water movement. Here, we seek to communicate digitally mediated senses of
activity and presence at the periphery of human awareness.

Panelists

Hiroshi Ishii
Massachusetts Institute of Technology            

Caleb Chung
Giving Toys, Inc.

Clark Dodsworth
Digital Illusion/Osage Associates

Bill Buxton
Alias|Wavefront, Inc.

Moderator

Michael Harris
Bear Systems, Inc.

mh@michaelharris.net

Natural and Invisible Human Interfaces
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The goal is to change the “painted bits” of GUIs to “tangible bits,” taking advantage
of the richness of multimodal human senses and skills developed through our lifetime
of interaction with the physical world.

The musicBottles project presents a tangible interface for interaction with a musical
composition.The core concept is that of using glass bottles as containers and controls
for digital information.The bottles represent the three performers (violin, cello, and
piano) in a classical music trio. Moving and uncorking of the bottles controls the dif-
ferent sound tracks and the patterns of colored light that are rear-projected onto the
table’s translucent surface.

Caleb Chung

Interfaces as Pets
Computer-human interface (moving from computers to humans) is difficult to bring
off. Better to go the other way: start with humans. Begin with what people want
around them: “nurturing,” “fun.” Remember that 80 percent of communication is
non-verbal. Don’t try to make interfaces friendly. Instead, start with friendly things
and make them smart!  

Imagine a personal digital assistant (PDA) that acts and reacts like a “virtual pet.”
It has attitude, character – qualities and cues that make you want to interact with it.
It has an interesting personality. It has its own agenda. It can become a friend.

Remember when you were six? Your imagination brought your simplest toys to life,
and the world around you was limitless.Those interfaces were driven by the human
imagination. Open thinking let you make intuitive leaps to invention, expanded your
imagination. You were free to create “on top of” your toys, following the most basic
human/animal cues.

Toys! Toys have “user friendly” down pat.Toys teach minimalism in physical design.
You can’t use expensive parts, four circuit boards, etc.The best toys support and
encourage imagination-driven open-ended play – true intelligence!

The best interfaces are transparent, unobtrusively observing humans and responding 
to their needs.The model “personal assistant” is the valet of 18th century British 
culture. Just tell it what you want done, without concern for its feelings, but always
with a sense of play. You needn’t be precise. And no one has time to learn to speak
alien languages.

Send the message that something is alive, and we’ll attribute intelligence to it.This is
the true natural interface. And it’s not that difficult, if we but try.Today’s amazingly
powerful computers can’t even tell if you’re there with them. Let them observe what
humans naturally do, then do that!  
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Clark Dodsworth

Universal Studios’ expansion project, Islands of Adventure, recently opened in Orlando.
It uses roughly two orders of magnitude more digital infrastructure than the original
– a step toward putting ubiquitous digital sensor and effector intelligence into the
entire built environment, indoors and outdoors.The guiding notion is that a theme
park should be aware of everyone who enters, learn a few facts about them, and then
provide a customized user-experience. Every bit of the park, including the landscaping
and robotic fauna, should behave or respond interestingly, engagingly to you, and then
react with tailored nuance to the next person or family.That notion is not unique to
the theme park industry; it’s in the strategic plans of the consumer electronics industry,
the toy business, the automobile business, and it’s important to a few alert individuals
in the computer industry.

The task is to create intelligent devices and environments that are designed to adapt
to humans and augment the human experience, rather than ones designed to be easily
manufactured and then adapted to by humans. In industry, the driving force is compe-
tition: parity products need to differentiate themselves. In the computer industry, which
holds the biggest rewards for such adaptive interfaces and human-centered design, that
driving force is largely quiescent. As intelligence and the software behind it migrate to
common objects, the computing world has far more to learn than to teach.

Bill Buxton

If the user is conscious of using a computer, that is a strong indicator of a design 
failure. Another way of looking at this is to ask: Of the total number of brain cycles
expended in performing a task, what percentage are consumed on operational issues
compared to content-specific ones? If it is greater than about five percent, we most
likely have a failure of design.

It borders on banal to state that we live in an ever-more-complex world, and much 
of that complexity is due to the previous generation of technology. It seems equally
obvious that the basic litmus test of future designs should be: Does it enhance our
ability to cope with that complexity? I view well-designed technology as a cognitive
(and often social) prosthesis. It is a means to render tractable problems that would
otherwise be overwhelming.

From a design perspective, there has been literally no progress since 1982 in the 
computers used by the majority of the population. And we still live in a climate where
it is acceptable for over 90 percent of computer science students to graduate without
ever writing a program that is used by another individual, much less be graded on
their ability to do so.

Well, the 1980s are over. And the status quo in design and education is just as dated
as the music of the Bee Gees, sideburns, and bell bottom trousers. We look back on
them with a bit of quaint nostalgia, coupled with horror that we ever found them
acceptable. It is time to grow up.
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ABSTRACT 
A novel touch screen technology is presented.  TouchLight uses 
simple image processing techniques to combine the output of two 
video cameras placed behind a semi-transparent plane in front of 
the user.  The resulting image shows objects that are on the plane.  
This technique is well suited for application with a commercially 
available projection screen material (DNP HoloScreen) which 
permits projection onto a transparent sheet of acrylic plastic in 
normal indoor lighting conditions.  The resulting touch screen 
display system transforms an otherwise normal sheet of acrylic 
plastic into a high bandwidth input/output surface suitable for 
gesture-based interaction.  Image processing techniques are 
detailed, and several novel capabilities of the system are outlined. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces—Input devices and strategies; I.4.9 [Image Processing 
and Computer Vision]: Applications 

General Terms 
Algorithms, Design, Human Factors 

Keywords 
Computer vision, gesture recognition, computer human 
interaction, displays, videoconferencing 

1. INTRODUCTION 
Common touch screen technologies are limited in capability.  For 
example, most are not able to track more than a small number of 
objects on the screen at a time, and typically they report only the 
2D position of the object and no shape information.  Partly this is 
due to superficial limitations of the particular hardware 
implementation, which in turn are driven by the emphasis on 
emulating pointer input for common GUI interactions.  Typically, 
today’s applications are only able to handle one 2D pointer input. 

A number of systems have recently introduced the concept of 
imaging touch screens, where instead of a small list of discrete 
points, a full touch image is computed, where each ‘pixel’ of the 
output image indicates the presence of an object on the touch 
screen’s surface.  The utility of the touch image thus computed 
has been demonstrated in gesture-based interactions for 
application on wall and table form factors. For example, the 
DiamondTouch [3] system uses horizontal and vertical rows of 
electrodes to sense the capacitively coupled touch of the users’ 
hands at electrode intersections.   

MetaDesk [13], HoloWall [9] and Designer’s Outpost [8] each 
use video cameras and computer vision techniques to compute a 
touch image. These systems permit simultaneous video projection 
and surface sensing by using a diffusing screen material which, 
from the camera view, only resolves those objects that are on or 
very near the surface.  The touch image produced by these 
camera-based systems reveals the appearance of the object as it is 
viewed from behind the surface.  Application events may be 
triggered as the result of image processing techniques applied to 
the touch image.  For example, the appearance or shape of an 
object may uniquely identify the object to the system and trigger 
certain application events.  

In this paper we introduce the TouchLight system, which uses 
simple computer vision techniques to compute a touch image on a 
plane situated between a pair of cameras and the user (see Figures 
1 and 2).  We demonstrate these techniques in combination with a 
projection display material which permits the projection of an 
image onto a transparent sheet of acrylic plastic, and the 
simultaneous operation of the computer vision processes. 

TouchLight goes beyond the previous camera-based systems; by 
not using a diffusing projection surface, it permits a high 
resolution touch image.  For example, a high resolution image of a 
paper document may be captured using a high-resolution still 
camera, or one of the newer high resolution CMOS video 
cameras. 

The absence of a diffuser also permits the cameras to see beyond 
the display surface, just as they would if placed behind a sheet of 
glass.  This allows a variety of interesting capabilities such as 
using face recognition techniques to identify the current user, eye-
to-eye video conferencing, and other processes which are typically 
the domain of vision-based perceptual user interfaces. 

We describe the overall configuration of TouchLight, and detail 
the image processing techniques used to compute TouchLight’s 
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touch image.  Finally, we discuss how TouchLight enables novel 
gesture-based interaction. 

2. TOUCHLIGHT CONFIGURATION 
The physical configuration of TouchLight is illustrated in Figure 1 
and Figure 2.  A pair of commonly available Firewire web 
cameras are mounted behind the display surface such that each 
camera can see all four corners of the display.  The importance of 
the distance between the cameras is discussed later.   

The DNP HoloScreen material is applied to the rear surface of the 
acrylic display surface.  The HoloScreen is a special refractive 
holographic film which scatters light from a rear projector when 
the incident light is at a particular angle.  The material is 
transparent to all other light, and so is suitable for applications 
where traditional projection display surfaces would be 
overwhelmed by ambient light. Typical applications include retail 
storefronts, where ambient light streaming through windows 
precludes traditional rear-projection screens.  Additionally the 
screen is transparent in the near-infrared range. Per 
manufacturer’s instructions the projector is mounted such that the 
projected light strikes the display at an angle of about 35 degrees.  
In a typical vertical, eye-level installation, this configuration does 
not result in the user looking directly into the “hot spot” of the 
projector.  We note that many projectors are not able to correct for 
the keystone distortion when the projector is mounted at this 
extreme angle.  In our implementation, we use the NVKeystone 
digital keystone distortion correction utility that is available on 
NVidia video cards. 

Experience with the HoloScreen material suggests that while the 
light reflected back from the rear of the screen is significantly less 
than the light scattered out the front, the projected image will still 
interfere with the image captured by any visible light-based 
cameras situated behind the display.  In the present work we avoid 
difficulties with visible light reflections by conducting image-
based sensing in the infrared (IR) domain. An IR illuminant is 
placed behind the display to illuminate the surface evenly in IR 

light. Any IR-cut filters in the stock camera are removed, and an 
IR-pass filter is applied to the lens. If necessary, an IR-cut filter 
may be applied to the projector.  By restricting the projected light 
to the visible spectrum, and the sensed light to the IR spectrum, 
the resulting images from the camera do not include artifacts from 
projected light reflected backwards from the HoloScreen film. 

In future work we plan to investigate the application of anti-
reflection films applied to the back and also perhaps the front 
surface of the display to eliminate reflections from the projector.  
This would allow the cameras to sense visible light and perhaps 
eliminate the need for a separate illuminant.  Later, we describe 
applications which benefit from visible-light based sensing. 

While for our initial implementation we have chosen to mount the 
display vertically such that the user may stand, it is also possible 
to mount the display surface horizontally to make a table.  In this 
case a “short throw” projector such as the NEC WT600 may be 
desirable. 

Finally, a microphone is rigidly attached to the display surface to 
enable the simple detection of “knocking” on the display. Except 
for the microphone, there are no wires attached, making 
TouchLight more robust for public installation. 

3. IMAGE PROCESSING 
3.1 Introduction 
The goal of TouchLight image processing is to compute an image 
of the objects touching the surface of the display, such as the 
user’s hand.  Due to the transparency of the display, each camera 
view shows the objects on the display and objects beyond the 
surface of the display, including the background and the rest of 
the user.  With two cameras, the system can determine if a given 
object is on the display surface or above it.  TouchLight image 
processing acts as a filter to remove objects not on the display 
surface, producing a touch image which shows objects that are on 
the display surface and is blank everywhere else.  A sample output 
image is illustrated in Figure 3d. 

Figure 2 TouchLight prototype displaying a sample graphic. 
Figure 1 TouchLight physical configuration: DNP 

HoloScreen with two IR cameras and IR illuminant behind 
screen. 



 

(b) Lens 
distortion 
correction 

(c) Perspective 
correction 

(d) Fused image  

(a) Raw input 

Figure 3 TouchLight image processing steps illustrated.  Images are captured in an office with normal indoor lighting: (a) raw 
input from both cameras, (b) input after lens distortion correction, showing display geometry during calibration, (c) input after 

perspective correction to rectify both views to display, and (d) fused image obtained by multiplying perspective corrected images 
shows only the objects that are very near the display.  Hand on the left is placed flat on the display, hand on the right is slightly 

cupped, with tips of fingers on the display, and surface of palm above the display. 



The touch image is produced by directly combining the output of 
the two video cameras.  Depth information may be computed by 
relating binocular disparity, the change in image position an 
object undergoes from one view to another view, to the depth of 
the object in world coordinates.  In computer vision there is a long 
history of exploiting binocular disparity to compute the depth of 
every point in a scene.  Such depth from stereo algorithms are 
typically computationally intensive, difficult to make robust, and 
constrain the physical arrangement of the cameras.   

Often such general stereo algorithms are applied in scenarios that 
in the end do not require general depth maps.  Here we are 
interested in the related but easier problem of determining what is 
located on a particular plane in three dimensions (the display 
surface) rather than the depth of everything in the scene.  A 
related approach is taken in [14] and [2]. The algorithm detailed 
here runs in real time (30Hz) on a Pentium 4, operating on 
640x480 images. 

3.2 Image Rectification 
The TouchLight image processing algorithm proceeds by 
transforming the image from the left camera leftI  and the image 

from the right camera rightI  such that in the transformed images 

points ),( yxIleft  and ),( yxIright refer to the same physical point 

on the display surface.   

Secondly, this transform is such that the point ),( yx  may be 

trivially mapped to real world dimensions (i.e., inches) on the 
display surface.  For both criteria, it suffices to find the 
homography from each camera to the display surface, which we 
obtain during a manual calibration phase. 

In the case of using wide angle lenses to make a compact setup, it 
is important to remove the effects of lens distortion imparted by 
wide angle lenses.  We use the formulation outlined in [7].  Given 
the lens distortion parameters, we undistort the input image by 
bilinear interpolation.  Sample images are shown in Figure 3b. 

During a manual calibration phase, the 4 corners of the display are 
manually located in each view. This specifies a projective 
transform bringing pixels in the lens distortion corrected image to 
display surface coordinates.  Together with the lens distortion 
correction, the projective transform completes the homography 
from camera view to display coordinates.  Sample resulting 
images are shown in Figure 3c.  We note that it is desirable to 
combine the lens distortion correction and projective transform 
into a single nonlinear transformation on the image, thus requiring 
only one resampling of the image. Furthermore it is 
straightforward to perform this entire calculation on a graphics 
processing unit (GPU), where the transformation is specified as a 
mesh. 

3.3 Image Fusion 
After rectification the same point ),( yx  in both leftI  and rightI  

refer to the same point on the display surface. Thus, if some image 
feature f  is computed on leftI  and rightI , and 

),(),( yxfyxf rightleft ≠ , we may conclude that there is no object 

present at the point ),( yx  on the display surface.  The touch 

image mask is computed by performing such pixel-wise 

comparisons of the left and right images.  This is essentially 
equivalent to performing standard stereo-based matching where 
the disparity is constrained to zero, and the rectification process 
serves to align image rasters. 

In the case where a strong IR illuminant is available, and the goal 
is to identify hands and other IR reflective materials on the 
display surface, it may suffice to simply pixel-wise multiply the 
two rectified images.  Regions which are bright in both images at 
the same location will survive multiplication.  Sample resulting 
fused images are shown in Figure 3d.  We note that it is possible 
to implement this image comparison as a pixel shader program 
running on the GPU. 

As with traditional stereo computer vision techniques, it is 
possible to confuse the image comparison process by presenting a 
large uniformly textured object at some height above the display.  
Indeed, the height above the surface at which any bright regions 
are matched is related to the size of the object and to the baseline, 
the distance between the cameras.  For the same size object, larger 
baselines result in fusion at a smaller height above the surface, 
consequently allowing a finer distinction as to whether an object 
is on the display, or just above the display. 

Similarly, it is possible to arrange two distinct bright objects 
above the display surface such that they are erroneously fused as a 
single object on the surface. 

More sophisticated feature matching techniques may be used to 
make different tradeoffs on robustness and sensitivity.  For 
example, one possibility is to first compute the edge map of the 
rectified image before multiplying the two images.  Figure 4 
illustrates the result of applying a Sobel edge filter on the rectified 
images.  Only edges which are present in the same location in 
both images will survive the multiplication.  Thus, large uniform 
bright objects are less likely to be matched above the surface, 
since the edges from both views will not overlay one another.  In 
the case of using edges, it is possible and perhaps desirable to 

Figure 4 Edge-based image fusion.  Top left: Edge extraction 
of one view’s undistorted image (after step c in Figure 3) 

with sheet of paper a few inches above the display (left) and 
on the display (right).  Top right: product of edge images.  
Note page above the display is not visible. Bottom: similar 

images for same images in Figure 3. Hand on the left is 
placed flat on the display, hand on the right is slightly 

cupped, with tips of fingers on the display, and surface of 
palm above the display. 



reduce the baseline, resulting in better overall resolution in the 
rectified images due to a less extreme projective transform.  The 
use of edge images takes advantage of the typical distribution of 
edges in the scene, in which the accidental alignment of two edges 
is unlikely. 

Similarly, motion magnitude, image differences and other features 
and combinations of such features may be used, depending on the 
nature of the objects placed on the surface, the desired robustness, 
and the nature of subsequent image processing steps. 

It should be noted that the touch plane is arbitrarily defined to 
coincide with the display.  It is possible to configure the plane 
such that it lies at an arbitrary depth above the display.  
Furthermore, multiple such planes at various depths may be 
defined depending on the application.  Such an arrangement may 
be used to implement “hover”, as used in pen-based models of 
interaction. The image rectification and image comparison 
processes do not require the physical presence of the display.  In 
fact, it is possible to configure TouchLight to operate without the 
HoloScreen, in which case the “touch” interaction is performed on 

an invisible plane in front of the user.  In this case, it may be 
unnecessary to perform imaging in IR. 

3.4 Image Normalization 
A further image normalization step may be performed to remove 
effects due to the non-uniformity of the illumination.  The current 
touch image may be normalized pixel-wise by  

),(),(
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yxI

minmax

minproduct
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−
−=  

where minimum and maximum images minI  and maxI  may be 
collected by a calibration phase in which the user moves a white 
piece of paper over the display surface.  This normalization step 
maps the white page to the highest allowable pixel value, corrects 
for the non-uniformity of the illumination, and also captures any 
fixed noise patterns due to IR sources and reflections in the 
environment.  

After normalization, other image processing algorithms which are 
sensitive to absolute gray level values may proceed.  For example, 
binarization and subsequent connected components algorithm, 
template matching and other computer vision tasks rely on 
uniform illumination.  

3.5 Touch Image Interpretation 
Figure 5 shows three different visualizations of the touch image as 
it is projected back to the user.  Figure 5a shows the user’s hand 
on the surface, which displays both left and right undistorted 
views composited together (not a simple reflection of two people 
in front of the display). This shows how an object fuses as it gets 
closer to the display.  Figure 5b shows a hand on the surface, 
which displays the computed touch image.  Note that because of 
the computed homography, the image of the hand indicated by 
bright regions is physically aligned with the hand on the screen.   

Presently we have only begun exploring the possibilities in 
interpreting the touch image. Figure 5c shows an interactive 
drawing program that adds strokes derived from the touch image 
to a drawing image while using a cycling colormap.  

Many traditional computer vision algorithms may be used to 
derive features relevant to an application.  For example, it is 
straightforward to determine the centroid and moments of 
multiple objects on the surface, such as hands.  One approach is to 
binarize the touch image, and compute connected components to 
find distinct objects on the surface (see [5]).  Such techniques may 
also be used to find the moments of object shapes, from which 
dominant orientation may be determined.  Further analysis such as 
contour analysis for the recognition of specific shapes and 
barcode processing are possible. 

We have implemented a number of mouse emulation algorithms 
which rely on simple object detection and tracking. In one 
instance, the topmost object of size larger than some threshold is 
determined from a binarized version of the touch image.  The 
position of this object determines the mouse position, while a 
region in the lower left corner of the display functions as a left 
mouse button: when the user puts their left hand on the region, 
this is detected as a sufficient number of bright pixels found in the 
region, and a left mouse button down event is generated.  When 
the bright mass is removed, a button up event is generated.  
Elaborations on this have been generated, including looking for a 

(a) 

(b) 

(c) 

Figure 5 Three different projected visualizations of 
TouchLight touch image: (a) left undistorted image in the 
green channel, right undistorted image in red channel.  (b) 

projection of touch image illustrates alignment of touch 
image with physical display. (c) an interactive drawing 
application with decaying strokes and cycling colors. 



bright mass just to the right of the tracked cursor object to detect 
left and right button down events when the second mass is near 
and far from the first, respectively. 

Finally, we use a microphone rigidly attached to the display to 
detect “knocking” events.  That is, when the user taps the display 
with their knuckle or hand, this is detected by finding large peaks 
in the digitized audio signal.  This can be used to simulate clicks, 
generate “forward” or “next slide” events, and so on.  Note that 
while the tap detector determines that a tap event occurred, the 
touch image may be used to determine where the event occurred. 
For example, a tap on the left side of the screen may generate a 
“previous” event, while a tap on the right a “next” event.  This 
contrasts with the tap detector in [10].  

4. APPLICATIONS 
The unique characteristics of TouchLight lead us to speculate on 
some possible applications that go beyond emulating traditional 
touch screen technology.  In the following we outline a few 
possibilities for future exploration. 

4.1 Visible Light Surface Scanning 
The HoloScreen display material is unique in that it supports 
video projection and is nearly transparent to IR and visible light.  
The basic TouchLight system takes advantage of this fact in the 
placement of the cameras behind the display.  This placement 
provides a good view of the underside of the objects placed on the 
display surface. The transparency of the display surface may be 
exploited to create high resolution scans of documents and other 
objects placed on the display surface. 

A high resolution still digital camera or CMOS video camera may 
be placed behind the display to acquire high resolution images of 
the objects on the display surface.  This camera may capture 
images in the visible spectrum (no IR-pass filter).  In such a 
configuration it may be beneficial to use the touch image 
computed from the IR cameras to perform detection and 
segmentation of objects of interest, and limit the projection of 
visible light onto the area of interest. 

For example, an image processing algorithm may detect the 
presence of a letter-sized piece of paper on the display surface.  
The application removes any projected graphics under the 
presented page to enable a clear visible light view, and triggers the 
acquisition of a high resolution image of the display surface.  The 
detected position, size and orientation of the page may then be 
used to automatically crop, straighten and reflect the high 
resolution scan of the document.  Alternatively, the application 
may project an all-white graphic on the page to clearly illuminate 
it. 

The ability to create high resolution surface scans of documents 
and other objects may play an important role in business and 
productivity oriented applications for smart surfaces such as 
interactive tables and smart whiteboards. 

We note that related systems such as the MetaDesk, HoloWall, 
and Designer’s Outpost all use diffusing projection surfaces to 
facilitate projection and sensing algorithms.  Such diffusing 
surfaces severely limit the ability of these systems to acquire high 
resolution imagery of objects on the surface. 

4.2 Video Conferencing 
The ability to place a camera directly behind the HoloScreen 
display, and the ability of the TouchLight system to selectively 
attend to objects on the surface and the scene beyond the surface 
may enable some interesting video conferencing scenarios. 

For example, maintaining direct eye contact is impossible in 
today’s video conferencing systems, where the camera and the 
display are not co-axial. It is possible to use a half-silvered mirror 
to make the camera and display coaxial.  This approach has been 
studied in the context of video conferencing systems in [1] and 
[6].  The use of a half-silvered mirror has the disadvantages that 
the brightness of the display and the acquired image is 
significantly reduced, the setup requires large amounts of space in 
front of the display, and finally, the configuration imposes 
restrictions on viewing angle. 

An eye-to-eye video conferencing system may be constructed by 
placing a video camera directly behind the TouchLight display 
surface. The chief difficulty in constructing such a system is that if 
the camera used is acquiring IR images so as to avoid artifacts 
from the projected image, the resulting imagery may not be 
satisfactory for presentation back to the user.  Alternatively, if the 
camera acquires visible light images, then the presentation must 
be carefully crafted so that the acquired image does not include 
any light scattered back from the rear of the display surface.  The 
application of an anti-reflective film on the front and rear of the 
HoloScreen material may eliminate the back reflection.  We also 
note that it is theoretically possible to use image processing 
techniques to remove artifacts due to the projection since the 
system has access to the projected image and the homography 
from the camera to the display surface is known.   

The ability to place a camera behind the screen may have uses 
beyond eye-to-eye video conferencing.  Even with the grayscale 
IR image returned by TouchLight, it will be possible to determine 
who is interacting with the display surface by face recognition 
techniques, determine whether they are looking at the display and 
possibly even where on the display the user is looking.  Such 
capabilities may be relevant in multi-user and collaborative 
scenarios. Perhaps uncomfortably, such analysis can conducted 
with the cameras completely concealed behind the display surface. 

A number of research projects have explored video conferencing 
displays which are loosely modeled as panes of glass in which two 
non co-located users are able to see each other manipulate objects 
rendered on the display.  ClearBoard [6] is an early example (see 
Figure 6).  We foresee the applicability of this window metaphor 
in using TouchLight in video conferencing scenarios. Note that 
the ability to create high resolution scans outlined in the previous 
section may be especially valuable in this scenario.  

4.3 Minority Report Interfaces 
Movies such as Minority Report and The Matrix Reloaded have 
popularized the idea of gesture and direct manipulation-based 
interfaces involving transparent displays.  Of the hundreds of 
people that have seen TouchLight demos, roughly half made 
unsolicited comparisons of TouchLight to the interaction systems 
shown in these two movies.  The value of the transparency of the 
displays used in these future visions is debatable.  Clearly, the 
transparency taps into the public’s fascination with holograms, 
but more mundanely it creates the opportunity for filmmakers to 



cleanly put the interaction system and the actor’s face in the same 
shot. 

Several research projects, however, are taking seriously the 
gesture-based manipulation of onscreen objects [15] [11] in the 
style of direct manipulation.  For certain classes of interaction, 
this style of interaction seems to be more natural than the 
traditional WIMP (windows, icons, menus, pointer) interface.  For 
example, sorting through a stack of photos may be more easily 
conducted in a direct manipulation framework that allows the use 
of multiple hands, taking advantage of our own abilities to sort 
objects into groups or piles [12].  Objects may be rotated in a way 
that mimics the rotation of a physical piece of paper on a desk.  
Certain collaborative exercises may benefit from direct 
manipulation, where each user may easily comprehend the other 
users’ actions.  We suspect that direct manipulation frameworks 
are more readily picked up by novice users, and therefore are 
suited to quick serendipitous interactions, perhaps at public 
kiosks, or in short face to face, collaborative meetings.  In these 
situations the overhead in acquiring an input modality may mean 
the difference between conducting an interaction or not. 

4.4 Augmented Reality and Spatial Displays 
With the ability to project on a transparent display, TouchLight 
enables scenarios where projected graphics are overlaid onto 
imagery from the real world.  The application of the HoloScreen 
material for an augmented reality application is explored in [4], 
which describes a boom-mounted and instrumented screen and 
projector system used to overlay graphics onto the real world 
beyond the screen. 

TouchLight raises new possibilities for augmented reality and 
spatial displays. For example, imagine a retail environment 
installation where customers are invited to try on virtual articles of 
clothing while looking at themselves in a TouchLight “mirror”.  
In this scencario, a camera may be placed to synthesize the view 
the customer would have if they looked into a real mirror.  A 
computer graphics system would composite the clothing onto the 
view in real time as the customer moves, while TouchLight 
interaction may allow the user to select various articles of clothing 
on their mirror image, or interact with buttons alongside their 
image. 

With the touch sensitive capabilities of TouchLight, scenarios 
inspired by the concept of Alberti’s Veil or Lenonardo’s Window 
are possible.  Alberti’s Veil is a technique still used to teach 

perspective whereby a scene projected onto a window is traced, 
with the artist maintaining a stationary viewpoint (see Figure 7).  
With TouchLight, an artist may trace or modify a visual scene, 
and with computer vision techniques it is possible to track the 
face of the user and perhaps detect gaze direction to correct for 
parallax from the user’s point of view to the display in aligning 
projected graphics with the real world.  Many spatial display 
systems are based on the ability to track the user’s face and eyes. 

5. CONCLUSION 
A novel interactive surface and touch screen technology is 
presented.  TouchLight uses two cameras in combination with a 
commercially available projection screen technology which allows 
projection onto an otherwise transparent surface. This 
arrangement allows for certain novel applications and flexibility 
which go beyond previous related technologies. 

We have presented image processing techniques to produce a 
touch image useful for many gesture-based and perceptual 
computing scenarios. A number of applications which take 
advantage of the unique characteristics of TouchLight have been 
suggested; we hope to explore some of these in the future. 
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This experiment tests the theory for frustrated total internal reflection
using light in the visible spectrum.  A decaying exponential relationship
between the intensity of a transmitted light beam and the distance between
two media was found.  The results are relevant for an undergraduate optics
physics course or quantum mechanics course where it is analogous to
barrier penetration.

INTRODUCTION
J. C. Bose was examining the wave nature

of the radiation of microwaves in 1897.  His
experiment consisted of a beam of microwaves
directed at a right angle asphalt prism.  The
microwaves were totally internally reflected by
the hypotenuse of the prism.  However, when a
second right angle prism was placed in contact
with the first, hypotenuse to hypotenuse, the beam
of microwaves passed through.  The distance
between the two prisms was increased, but kept
significantly smaller than the wavelength of the
microwave.  A portion of the beam was
transmitted through the prisms and across the gap
between them.  This confirmed the wave nature of
microwaves.1

In order for this to occur, the wave passing
through the first prism must have penetrated into
the air gap between the prisms.  When the gap is
small enough, the wave is able to pass through the
second prism as well.  The wave that is
penetrating the barrier of air between the two
prisms is called the evanescent wave.  Carniglia
and Mandel found that evanescent waves are not
different from homogeneous waves, when the
photoelectric emission of a bound charge is under
the influence of an evanescent wave.2

Hall studied the experimental and
theoretical ideas of the transmitted wave and
published it in 1902.3  His method consisted of
introducing a third material identical to the first
(the prisms in Bose’s experiment) and placing it
very close to the first, creating a thin area between
the identical materials.  The thickness of the
material between the two identical materials must
be on the order of the wavelength of the wave
used.  The total reflection of light is frustrated.
The materials used are assumed to be transparent.
Hall studied the distance that the wave penetrated
into the barrier with respect to the angle of
incidence and the polarization of the incident
radiation beam for several different materials.  He

found that the intensity of the transmitted light
increases as the distance the wave penetrates into
the barrier region increases.3  He also observed
that the penetrated distance increases as the
indices of refraction of the two media decrease.3

The transmission coefficient in terms of
the distance between the two identical materials
was found using Maxwell’s equations.  They were
verified using centimeter wave radiation and the
experiment first used by Bose.  Hall’s theoretical
work was extended by Eichenwald, Foersterling,
and Arzelies.  They examined the energy flow,
and found that the evanescent wave decayed
exponentially in the barrier.4  With the
development of quantum mechanics, barrier
penetration was found to be analogous to the
frustrated total internal reflection of optics.

THEORY
A beam of light that is incident on a

reflective surface at an angle θi will be reflected at
an angle θ r  according to the Law of
Reflection:θ θi r= .  The angles are measured from
the normal to the surface.  Both the incident and
reflected beams of light lie in one plane, the plane
of incidence.  However, if a beam of light is
incident on a surface that is not completely
reflective, the beam will “bend” as it crosses the
boundary.  The light does not actually bend, but
its speed changes, resulting in the transmitted
light traveling at a different angle, the
transmittance angle θt.  The medium that the plane
of incidence lies in has the index of refraction of
ni, and the medium the transmitted plane is in has
the index of refraction of nt.  The angle of
incidence and the transmitted angle relate to each
other by their respective indices of refraction
according to Snell’s Law, n ni i t tsin sinθ θ( ) = ( ).

In the case of internal reflection (where ni>
nt) all the incoming light is reflected back into the
incident medium when the incident angle is



Urban: Frustrated Total Internal Reflection

- 2 -

greater than or equal to the critical angle, θc

(which is the incident angle for which the
transmitted angle is equal to 90 degrees).

While it does not appear that there is a
transmitted wave, it does exist, it just cannot carry
energy across the boundary.  The intensity, I, of
the transmitted light is given by5
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D is the distance between the two media, and λo is
the wavelength of light in a vacuum.

So, if the angle of incidence and the
indices of refraction of the two media are known,
the graph of the intensity of the transmitted light
beam versus the ratio of the distance between two
media to the wavelength of light would follow an
exponential decay.  Equation 2 can be used to find
the value of α  which can be compared to a
calculated value from an exponential fit of a graph
of the intensity of the transmitted light beam
versus the ratio of the distance between the two
media to the wavelength of light.

EXPERIMENT
The method used consisted of two flat

glass Fabry-Perot mirrors (nglass=1.51509) secured
into holders on a Hilger &Watts translation stage
with their coated sides facing each other.  The
glass flats were cleaned thoroughly using lens
paper so that there were no debris on the flats.  To
make sure the flats were parallel to each other, a
Melles Griot HeNe laser was used to roughly
align them, followed by a Hydrogen-Deuterium
source placed at the focal point of a lens.  A filter
was placed in between the lens and the glass flats,
which were aligned so circular fringes were
observed.  As the flats were moved closer
together, the interference fringes (which look like
concentric rings getting smaller then disappearing,
while other rings appear on the outside) occur.  At
the point where the fringes stop, the distance
between the flats is approximately less than one
half the wavelength of light.

A small, right angle prism was attached to
the glass disk in the movable translation holder
using decahydronaphthalene, a liquid material that
has a similar index of reflection as the prism and
the glass.  The decahydronaphthalene was added
drop by drop using a toothpick to the hypotenuse
of the prism and then attached by the surface
tension of the liquid.  The prism and glass flat will
then act as a single material with the same index
of reflection, so when the light beam passes from

the prism to the glass flat through the liquid
material, it will not deflect.  In order for the
transmitted light beam to exit the glass flat and be
observed, a second prism needed to be attached to
the glass flat in the stationary holder.  See Figure
1.  The second prism was the exact same as the
first prism, and attached to the glass disk in the
same manner.

Reflected
light beam

Reflected
light beam

Photo
diode

HeNe
laser

Incident
light beam

Transmitted
light beam

Normal
Light beam

θ
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θt1

θ
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θ
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FIG. 1. This was the arrangement of glass flats, prisms,
HeNe laser, and photo diode. Some of the light from the
HeNe laser is reflected off of the surface of the prism while
the rest of it goes into the prism and glass flats.  At the
interface between the glass flat and the air of the gap, some
light is reflected also.

The Melles Griot HeNe laser (λ=633 nm)
was moved more perpendicular to the glass disks,
and at an angle of approximately 10 degrees from
the normal of the first prism.  This resulted in the
incident angle (incident on the interface from
glass to the air in the gap between the two glass
flats) of the light beam inside the glass to be
greater than the critical angle.  This makes sense
because in order for total internal reflection to
occur, the angle of incidence must be greater than
or equal to the critical angle.

A photo diode connected to a United
Detector Technology optometer was used to
measure the intensity of the transmitted light
beam.  The photo diode was positioned so that its
screen was perpendicular to the transmitted light
beam, making sure that the whole beam was
hitting the screen.

The intensity of the transmitted light beam
at different distances between the glass flats was
measured, starting when the glass flats were
touching.  Because Fabry-Perot flats were used,
the intensity of the light increased, then decreased,
then increased again, then decreased again, and so
on as the glass flats were moved apart.  The
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reason for the interference fringes, and therefore
the variation in the intensity of the transmitted
light beam, was the coating on the glass flats.  The
coating is partially reflective, so light bounces in
between the glass flats, only some of the light
getting out each time.  In order to compensate for
this while taking data, intensity measurements
were only taken at the peak intensities, when the
beam was at its most intense.  While looking at
the screen of the photo diode, the distance
between the glass flats was increased very slowly
until the intensity of the beam was at its greatest.
At this time, the maximum intensity reading and
the distance between the glass flats were recorded.
Then, the distance was again increased very
slowly.  The intensity of the next maximum fringe
and the distance between the flats were recorded.
The intensity for the fringes and the distances
between the flats were recorded in this manner
until there was little change in the maximum
intensity of subsequent readings.

DATA AND DISCUSSION
The value for the angle of incidence in the

first interface was found using geometry.  A meter
stick was placed a measured distance away from
the first prism, but not as far away as the HeNe
laser.  The distance between where the light beam
entered the prism and the zero point of the meter
stick was the measured distance the meter stick
was away from the prism.  Knowing these
distances and the distance between the meter stick
and the prism, the angle of incidence was
calculated to be 9.53°.

The procedure that was used to take the
data necessitated the advancing of the distance
between the glass disks at a very slow speed so
the advancing could be stopped at the maximum
intensity of the light beam hitting screen of the
photo diode.  Since the maximum comes and goes
so quickly, the instant that the maximum
occurred, the intensity reading needed to be taken.
Instead of watching the photo diode screen to see
when the maximum intensity occurred, the
intensity meter was watched.  This allowed the
maximum intensity of the light beam reading to
be made for each of the intensity fringes.  The
second set of data taken verified that this process
worked because there were no outlying intensity
measurements.
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FIG. 2. This is the graph of the second set of d

The graph in Figure 2 is the intensity of
the transmitted light beam plotted on a log scale
on the y-axis and the ratio of the distance, D,
between the glass flats to the wavelength of light.
The general trend for the graph appears to be a
double exponential.  If it was a single exponential,
then the data would form a linear pattern.  There
appears to be two different linear patterns for this
graph, one ranging from where D/wavelength is
zero to approximately 150 or so.  The other linear
pattern ranges from where D/wavelength is about
150 through 750.

It is speculated that one exponential
function describes the reflective coating of the
Fabry-Perot glass flats while the other describes
the intensity of the light beam as a function of the
ratio of D divided by the wavelength of light.

Igor Pro 4.01 was unable to fit a
satisfactory double exponential curve to this data
on its own.  So, one of the parameters of the
function needed to be set for it.  Since one of the
exponential functions describes the intensity of
light as opposed to the reflective properties of the
glass flats’ coating, Equation 2 was used to find
the value of α.  The value of alpha then relates the
intensity of the light beam to the ratio of D
divided by the wavelength of light through
Equation 1.

The transmitted angle for the first interface
(between air and the first prism) was found using
Snell’s Law, with the angle of incidence and the
indices of refraction as stated earlier.  Using this
angle, the angle of incidence for the second
interface (between the first glass flat and the air of
the gap) was found to be 51.3°.  This angle is
necessarily greater than the critical angle, which is
41.3°.

RESULTS
The value for the variable α  in Equation 1

was found using Equation 2 with the angle of
incidence and the indices of refraction for the
second interface (between the first glass flat and
the air of the gap) stated earlier.  The calculated
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value of α  (α = 7 92. ) allowed Igor Pro 4.01 to
find a double exponential function that fit the
graph of the intensity of the transmitted light
beam versus the ratio of the distance between the
glass flats to the wavelength of light.
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FIG. 3. This is a plot of the second set of data.  The ratio of
D to the wavelength of light is plotted on the x-axis and the
intensity of the transmitted light beam is plotted on a log
scale on the y-axis.  A double exponential curve was fit to
the data:
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CONCLUSION
This experiment yielded sufficient data

that supported the theory for frustrated total
internal reflection using visible light.  Good
quantitative results were not obtained, but a
decaying exponential relationship between the
intensity of a transmitted light beam and the
distance between two media was found.  In order
to yield accurate quantitative results, the distance
between the two glass flats needed to be
measurable at distances less than one wavelength
of light.  The Hilger & Watts translation stage
used only had resolution to one micrometer
instead of ten nanometers (which would be a
sufficient division of the wavelength of light).
The translation stage was, however, able enough
to yield a good qualitative picture.  Another factor
that halted a deeper exploration into the
transmission coefficients of the tunneled light
beam was the crude accuracy of the optometer,
which measured the intensity of light.
Quantitative results may also be able to be
obtained with glass flats that did not have any
reflective coating on their surfaces.

1Ghose, Partha, Testing Quantum Mechanics on New
Ground. Cambridge University Press: Cambridge, England,
1999, p 29.
2Carniglia, C.K. and L. Mandel, “Quantization of
evanescent electromagnetic waves,” Physical Review D. 3
(1), 280-296 (1971).
3Hall, E. E., “The penetration of totally reflected light into
the rarer medium.” Physical Review. 15, 73-106 (1902).
4Zhu, S., A. W. Yu, D. Hawley, and R. Roy, “Frustrated
total internal reflection: A demonstration and review,”
American Journal of Physics. 54 (7), 601-606 (1986).
5Hecht, Eugene, Optics, 4th ed. Addison Wesley: New York,
2002, p 125.



Synthesis and Control on

Large Scale Multi-Touch Sensing Displays

 Philip L. Davidson Jefferson Y. Han

Courant Institute of Mathematical Sciences

New York University

719 Broadway New York, NY 10003

{ philipd, jhan }@mrl.nyu.edu

ABSTRACT
In this paper, we describe our experience in musical interface 

design for a large scale, high-resolution, multi-touch display 

surface. We provide an overview of historical and present-

day context in multi-touch audio interaction, and describe our 

approach to analysis of tracked multi-finger, multi-hand data for 

controlling live audio synthesis.

Keywords
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1 INTRODUCTION
The musician’s need to manipulate many simultaneous degrees 

of freedom in audio synthesis has long driven the development of 

novel interface devices. Touch sensors integrated with graphical 

display functionality can provide intuitively direct interactivity 

with richly dynamic context; however they are typically only able 

to respond to a single point of contact a time, making them quite 

limiting for musical input. Multi-touch sensors on the other hand 

permit the user fully bi-manual operation as well as chording 

gestures, offering the potential for great input expression. Such 

devices also inherently accommodate multiple users, which 

makes them especially useful for larger interaction scenarios 

such as interactive tables.

These devices have historically been difficult to construct, but 

we have taken advantage of a new rear-projectable multi-touch 

sensing technology with unique advantages in scalability and 

resolution, to create novel musical interfaces for synthesis and 

control in a large format dynamic workspace.

2 PREVIOUS WORK

2.1 Multi-Touch Interfaces
Boards composed of a plurality of individual controls such as 

sliders, knobs, buttons, keys, and touchpads, can in a sense be 

considered multi-touch interfaces. Advanced devices of this 

class include large arrays of position-sensitive touch sensors 

such as Buchla’s Thunder [2], Eaton and Moog’s Multiple-Touch 

Keyboard [7] and the Continuum Fingerboard [8]. However, 

we are more interested in homogeneous interaction surfaces that 

allow for dynamic contextualization.

Buxton experimented with continuous touch-sensing [22] as 

well as multi-touch sensing devices for music with the Fast 

Multiple-Touch-Sensitive Input Device [3][14]. This device was 

an active matrix of capacitive touch sensors, 64 32 in resolution. 

Instead of integrating it with a display, Buxton utilized cardboard 

template overlays to partition the interaction surface to provide 

context, in addition to kinesthetic feedback.

Tactex more recently experimented in the marketplace with 

a product directly aimed at musicians called the MTC Express 

[23]. This device optically measured the compression of a 

translucent compressible foam, and though it only had a spatial 

resolution of 8 9, it has an impressive temporal sampling rate 

(200Hz) and dynamic range in pressure, making it mostly useful 

for percussive control.

The recent Lemur from JazzMutant [11] is a multi-touch sensor 

that is tightly integrated with an LCD display. The device is sized 

for , and functions as a software-configurable controller board. 

However, the device is low resolution (128 100) and provides no 

pressure information, limiting the sophistication of the interface 

widgets that are provided. Furthermore, the system is not open 

enough to allow access to either the raw sensor data stream or to 

the raw display itself, limiting its usefulness for the exploration 

and development of novel interfaces.

All of the systems above have a complexity on the order of 

the number of tactels, which limits both resolution (though 

interpolation and other signal processing techniques can mitigate 

Figure 1: Rear-projected, multi-touch interaction session
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this for a sparse set of contacts) and physical scale, reducing 

their role in musical performance to a component within a larger 

system. Other more scalable multi-touch sensing technologies 

are starting to become available [6][21][26], but these are still 

difficult/expensive to obtain, and we have not yet seen any 

reports of their usage in a musical context.

2.2 Tangible Interfaces
Larger scale musical interfaces have also developed around the 

concept of the manipulation of trackable tangible assets, such as 

blocks or pucks. These tangible interfaces [10] can accommodate 

more than one hand and/or more than one user, and take advantage 

of the user’s sense of kinesthesia and skills in three-dimensional 

spatialization.

The AudioPad [19], is a tabletop instrument which utilizes 

modified Wacom tablet systems to track the position and 

orientation of a limited number of pucks. This tabletop 

environment enabled the dynamic control of loops of other 

synthesis through marking menus, and also allowed the pucks to 

act as dials and other controllers to vary parameters. Pucks could 

also be equipped with a pushbutton, which could be regarded as 

1-bit pressure sensitivity.

d-touch [5] and the reacTable* [12] are more recent tabletop 

instruments based on vision-based tracking of optical fiducials. 

They track many more pucks without compromising the sensing 

update rate, and have developed several tangible musical 

interface paradigms.

We find that these, and other tangible instruments [1][16][17][18] 

provide an intuitive and approachable environment for musical 

control, but face challenges as the complexity of the environment 

increases.

3 SYSTEM OVERVIEW
Through the usage of a scalable high-resolution multi-touch 

sensing technique, we build a system that encompasses the 

functionality of both the virtualized controllers possible on multi-

touch devices such as Lemur, and the space and scale of multi-

user patching systems such as AudioPad and reacTable*[13].

The technique is based on frustrated total internal reflection [9], 

implemented in the form factor of a 36”x27” drafting table, at a 

sensing resolution of ~2mm at 50Hz. It provides full touch image 

information without any projective ambiguity issues whatsoever. 

The touch information is true- it accurately discriminates 

touch from a very slight hover, while also providing pressure 

information. The sensor image sequence is analyzed and parsed 

into discrete stroke events and paths with a processing latency 

of about 3.5ms on a 3GHz Pentium 4. Measurements including 

position, velocity, pressure, and image moments are sent to client 

applications using the lightweight OSC protocol [27] over UDP. 

The system is notably graphically integrated via rear-projection, 

preventing undesirable occlusion issues.

For our experiments with audio control, we built a simple set 

of synthesis modules using STK [4], controlled by a modular 

patching interface.

4. DISCUSSION

4.1 Graphical Context
As Buxton first demonstrated, context is a critical issue for 

touch interfaces. While we are a few steps beyond cardboard 

overlays, context for interaction on continuous control surfaces 

is a challenging problem. Although the pucks used in AudioPad 

and reactTable* are visually passive, information is projected 

on and around the puck to provide additional feedback to the 

user. As such, they are a convenient metaphor for control in 

contextualizing the surface.

4.2 Basic Gestures
Pucks emphasize our ability to precisely manipulate objects 

between our fingers. True multi-touch surfaces should provide 

a similar capacity for manipulation, in contrast to a discrete set 

of continuous controls. We begin by extending the dextrous 

manipulation concept to the touch surface by creating regions 

of the surface that act as virtual puck-like widgets. Touch 

information captured by each widget is processed together as a 

single complex gesture. As with pucks, we use the space in and 

around these controllers for rich visual feedback.

4.3 Interpretation Model
Free from the limitation of the physical world, we can start to  

extend the metaphor of the basic puck- for instance, the control 

region associated with a widget can be dynamically resized or 

reshaped in the course of a performance.

We can also flexibly divide inputs into separate control groups, 

and selectively constrain degrees of freedom while maintaining 

a robust handling of under- or overconstrained input cases. As 

an example, constraining the transformation to rotation and 

translation is equivalent to the degrees of freedom in a physical 

puck, while constraint to single-axis translation acts as a slider. 

We implemented the more traditional interface widgets such as 

sliders, knobs, and keys, which the performer can manipulate 

any set of simultaneously. Additionally, the availability of 

pressure information allows for more sophisticated revisions 

of these basic controls. We also use a ‘deadband’ model [15] to 

differentiate between tracking and control, permitting the precise 

acquisition of control elements by the user. Pressure data is also 

heavily used for more novel controls such as Zliders [20], as well 

as control pads which interpret relative pressure values as tilt 

measurements.

4.3 Complex Gestures
With the input captured from two or more hands, we can start to 

simulate physical manipulations such as strain, twist, or bending 

motions. Through this we can consider virtual instruments 

controlled by simplified physical systems - for example, we could 

monitor volume of a deformable object to determine the flow 

rate for a wind controller, or use strain measurements to modify 

string tension or resonance modes. We are currently exploring 

Figure 2: AudioPad, reacTable*, and Lemur
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the possibilities using a fretboard and plucked string model to 

produce an autoharp, or koto-like instrument.

4.3 Structural Flexibility
We find that contextualizing manipulation through widgets 

allows similar precision in parametric control as a physical puck 

model, and that multi-touch gestures are a natural extension of 

the control space. Capturing the wide gestural range possible 

with the hand [24] requires that the sensor accurately track 

points in close proximity, and control gestures must recognize 

the limitations of hand geometry as described in [25], to prevent 

painful or impractical gestures. One advantage to virtualization 

is that each arrangement can conform to the size and shape 

of the user’s hands, preventing undue stress. As with any 

continuous control surface, widgets may be adjusted, expanded 

or repositioned without the synchronizing the location of their 

physical counterparts. In Figure 3, we show the use of a two-

dimensional view manipulator, actuated with a simple two-

fingered gesture, allowing the user to pan, zoom, and rotate 

the workspace and inspect a modular element in detail with no 

loss of context, giving the performer the ability to manage large 

workspaces much more effectively.

5 FUTURE DIRECTIONS
There are some limitations in the core implementation that we 

would like to address that would further increase its usefuless 

for musical applications. For instance, our current sample rate 

of 50Hz is good but not great, particularly for percussive input, 

although this is mitigated by the fact that a large amount of 

simultaneous information can be updated for each frame. We 

will be immediately upgrading the system to achieve 120Hz or 

more. 

Also, our current setup provides context only through visual 

means, but we are definitely looking to be able to provide some 

degree of haptic feedback as well.

We will continue to explore new and design of new widgets in this 

new domain. While the table has its advantages over traditional 

control surfaces, we are primarily interested in controls that take 

full advantage of the multi-touch data. A uniform control surface 

also raises the possibility of flexible interfaces - for example, a 

piano keyboard interface that adjusts spacing based on a user 

playing a set of prompted chords. In provided a customized 

scaling of the interface we can adapt to different players to better 

fit their stature, or to reduce RSI related conditions.

The versatility of the sensor allows for much more interesting 

form-factors than the console table we have shown here. In 

particular, for multi-user collaborative setups, we can envision a 

wider setup where two musicians perform on the same surface, 

while passing or linking sonic elements in a shared workspace.

Multi-touch sensing is currently an active field in HCI research, 

Figure 3: Dynamic workspace- users easily pan/zoom/rotate with a bimanual gesture

so we stand to harness the fruits of much other work in advancing 

the intuitiveness, efficiency, and usability of this unique family 

of interfaces.
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� Introduction

Within the broad scope of the study of arti�cial intelligence� research in neural networks is charac�
terized by a particular focus on pattern recognition and pattern generation� Many neural network
methods can be viewed as generalizations of classical pattern�oriented techniques in statistics and
the engineering areas of signal processing� system identi�cation and control theory� As in these par�
ent disciplines� the notion of �pattern� in neural network research is essentially probabilistic and
numerical� Neural network methods have had their greatest impact in problems where statistical
issues dominate and where data are easily obtained�

A neural network is �rst and foremost a graph� with patterns represented in terms of numerical
values attached to the nodes of the graph� and transformations between patterns achieved via
simple message�passing algorithms� Many neural network architectures� however� are also statistical
processors� characterized by making particular probabilistic assumptions about data� As we will see�
this conjunction of graphical algorithms and probability theory is not unique to neural networks�
but characterizes a wider family of probabilistic systems in the form of chains� trees� and networks
that are currently being studied throughout AI �Spiegelhalter� et al�� �		
��

Neural networks have found a wide range of applications� the majority of which are associated
with problems in pattern recognition and control theory� In this context� neural networks can
best be viewed as a class of algorithms for statistical modeling and prediction� Based on a source
of training data� the aim is to produce a statistical model of the process from which the data are
generated� so as to allow the best predictions to be made for new data� We shall �nd it convenient to
distinguish three broad types of statistical modeling problem� which we shall call density estimation�
classi�cation and regression�

For density estimation problems �also referred to as unsupervised learning problems� the goal
is to model the unconditional distribution of data described by some vector x� A practical example
of the application of density estimation involves the interpretation of X�ray images �mammograms
used for breast cancer screening �Tarassenko� �		��� In this case the training vectors x form a sample
taken from normal �non�cancerous images� and a network model is used to build a representation
of the density p�x� When a new input vector x� is presented to the system� a high value for p�x�
indicates a normal image while a low value indicates a novel input which might be characteristic of
an abnormality� This is used to label regions of images which are unusual� for further examination
by an experienced clinician�

For classi�cation and regression problems �often referred to as supervised learning problems�
we need to distinguish between input variables� which we again denote by x� and target variables
which we denote by the vector t� Classi�cation problems require that each input vector x be
assigned to one of C classes C�� � � � � CC� in which case the target variables represent class labels� As
an example� consider the problem of recognizing handwritten digits �LeCun� et al�� �	�	�� In this
case the input vector would be some �pre�processed image of the digit� and the network would
have ten outputs� one for each digit� which can be used to assign input vectors to the appropriate
class �as discussed in Section ��

Regression problems involve estimating the values of continuous variables� For example� neural
networks have been used as part of the control system for adaptive optics telescopes �Sandler� et
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al�� ������ The network input x consists of one in�focus and one de�focused image of a star and
the output t consists of a set of coe�cients that describe the phase distortion due to atmospheric
turbulence� These output values are then used to make real�time adjustments of the multiple mirror
segments to cancel the atmospheric distortion�

Classi�cation and regression problems can also be viewed as special cases of density estimation�
The most general and complete description of the data is given by the probability distribution
function p	x� t
 in the joint input�target space� However� the usual goal is to be able to make good
predictions for the target variables when presented with new values of the inputs� In this case it is
convenient to decompose the joint distribution in the form�

p	x� t
 � p	tjx
p	x
 	�


and to consider only the conditional distribution p	tjx
� in other words the distribution of t given

the value of x� Thus classi�cation and regression involve the estimation of conditional densities� a
problem which has its own idiosyncracies�

The organization of the chapter is as follows� In Section  we present examples of network
representations of unconditional and conditional densities� In Section � we discuss the problem of
adjusting the parameters of these networks to �t them to data� This problem has a number of
practical aspects� including the choice of optimization procedure and the method used to control
network complexity� We then discuss a broader perspective on probabilistic network models in
Section �� The �nal section presents further information and pointers to the literature�

� Representation

In this section we describe a selection of neural network architectures that have been proposed
as representations for unconditional and conditional densities� After a brief discussion of density
estimation� we discuss classi�cation and regression� beginning with simple models that illustrate
the fundamental ideas and then progressing to more complex architectures� We focus here on
representational issues� postponing the problem of learning from data until the following section�

��� Density estimation

We begin with a brief discussion of density estimation� utilizing the Gaussian mixture model as an
illustrative model� We return to more complex density estimation techniques later in the chapter�

Although density estimation can be the main goal of a learning system� as in the diagnosis
example mentioned in the introduction� density estimation models arise more often as components
of the solution to a more general classi�cation or regression problem� To return to Eq� �� note
that the joint density is composed of p	tjx
� to be handled by classi�cation or regression models�
and p	x
� the 	unconditional
 input density� There are several reasons for wanting to form an
explicit model of the input density� First� real�life data sets often have missing components in the
input vector� Having a model of the density allows the missing components to be ��lled in� in an
intelligent way� This can be useful both for training and for prediction �cf� Bishop� ������ Second�
as we see in Eq� �� a model of p	x
 makes possible an estimate of the joint probability p	x� t
� Thus
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Figure �� A network representation of a Gaussian mixture distribution� The input pattern x is
represented by numerical values associated with the input nodes in the lower level� Each link has
a weight �ij � which is the jth component of the mean vector for the ith Gaussian� The ith interme�
diate node contains the covariance matrix �i and calculates the Gaussian conditional probability
p�xji��i��i�� These probabilities are weighted by the mixing proportions �i and the output node
calculates the weighted sum p�x� �

P
i �ip�xji��i��i��

in turn provides us with the necessary information to estimate the 	inverse
 conditional density
p�xjt�� The calculation of such inverses is important for applications in control and optimization�

A general and �exible approach to density estimation is to treat the density as being composed
of a set of M simpler densities� This approach involves modeling the observed data as a sample
from a mixture density�

p�xjw� �
MX

i��

�ip�xji�wi�� ���

where the �i are constants known as mixing proportions� and the p�xji�wi� are the component

densities� generally taken to be from a simple parametric family� A common choice of component
density is the multivariate Gaussian� in which case the parameterswi are the means and covariance
matrices of each of the components� By varying the means and covariances to place and orient
the Gaussians appropriately� a wide variety of high�dimensional� multi�modal data can be modeled�
This approach to density estimation is essentially a probabilistic form of clustering�

Gaussian mixtures have a representation as a network diagram as shown in Figure �� The
utility of such network representations will become clearer as we proceed for now� it su�ces to
note that not only mixture models� but also a wide variety of other classical statistical models for
density estimation are representable as simple networks with one or more layers of adaptive weights�
These methods include principal component analysis� canonical correlation analysis� kernel density
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estimation and factor analysis �Anderson� ������

��� Linear regression and linear discriminants

Regression models and classi	cation models both focus on the conditional density p
tjx�� They
di�er in that in regression the target vector t is a realvalued vector� whereas in classi	cation t

takes its values from a discrete set representing the class labels�
The simplest probabilistic model for regression is one in which t is viewed as the sum of an

underlying deterministic function f
x� and a Gaussian random variable ��

t � f
x� � �� 
��

If � has zero mean� as is commonly assumed� f
x� then becomes the conditional mean E
tjx�� It
is this function that is the focus of most regression modeling� Of course� the conditional mean
describes only the 	rst moment of the conditional distribution� and� as we discuss in a later section�
a good regression model will also generally report information about the second moment�

In a linear regression model the conditional mean is a linear function of x� E
tjx� � Wx� for
a 	xed matrix W � Linear regression has a straightforward representation as a network diagram in
which the jth input unit represents the jth component of the input vector xj � each output unit i
takes the weighted sum of the input values� and the weight wij is placed on the link between the
jth input unit and the ith output unit�

The conditional mean is also an important function in classi	cation problems� but most of the
focus in classi	cation is on a di�erent function known as a discriminant function� To see how this
function arises and to relate it to the conditional mean� we consider a simple twoclass problem in
which the target is a simple binary scalar that we now denote by t� The conditional mean E
tjx�
is equal to the probability that t equals one� and this latter probability can be expanded via Bayes
rule�

p
t � �jx� �
p
xjt � ��p
t � ��

p
x�

��

The density p
tjx� in this equation is referred to as the posterior probability of the class given the
input� and the density p
xjt� is referred to as the the class�conditional density� Continuing the
derivation� we expand the denominator and 
with some foresight� introduce an exponential�

p
t � �jx� �
p
xjt � ��p
t � ��

p
xjt � ��p
t � �� � p
xjt � ��p
t � ��

�
�

� � exp
n
� ln

h
p�xjt���
p�xjt���

i
� ln

h
p�t���
p�t���

io 
��

We see that the posterior probability can be written in the form of the logistic function�

y �
�

� � e�z
� 
��

where z is a function of the likelihood ratio p
xjt � ���p
xjt � ��� and the prior ratio p
t � ���p
t �
��� This is a useful representation of the posterior probability if z turns out to be simple�
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Figure �� This shows the Gaussian class�conditional densities p�xjC�� �dashed curves� for a two�
class problem in one dimension� together with the corresponding posterior probability p�C�jx� �solid
curve� which takes the form of a logistic sigmoid� The vertical line shows the decision boundary
for y � 	�
 which coincides with the point at which the two density curves cross�

It is easily veri�ed that if the class conditional densities are multivariate Gaussians with identi�
cal covariance matrices� then z is a linear function of x� z � w

T
x�w�� Moreover this representation

is appropriate for any distribution in a broad class of densities known as the exponential family
�which includes the Gaussian� the Poisson� the gamma� the binomial� and many other densities��
All of the densities in this family can be put in the following form�

g�x �� �� � expf��Tx� b�����a��� � c�x� ��g� ���

where � is the location parameter� and � is the scale parameter� Substituting this general form in
Eq� 
� where � is allowed to vary between the classes and � is assumed to be constant between
classes� we see that z is in all cases a linear function� Thus the choice of a linear�logistic model is
rather robust�

The geometry of the two�class problem is shown in Figure �� which shows Gaussian class�
conditional densities� and suggests the logistic form of the posterior probability�

The function z in our analysis is an example of a discriminant function� In general a discrim�
inant function is any function that can be used to decide on class membership �Duda and Hart�
����� our analysis has produced a particular form of discriminant function that is an intermediate
step in the calculation of a posterior probability� Note that if we set z � 	� from the form of the
logistic function we obtain a probability of 	�
� which shows that z � 	 is a decision boundary

between the two classes�
The discriminant function that we found for exponential family densities is linear under the

given conditions on �� In more general situations� in which the class�conditional densities are
more complex than a single exponential family density� the posterior probability will not be well






characterized by the linear�logistic form� Nonetheless it is still useful to retain the logistic function
and focus on nonlinear representations for the function z� This is the approach taken within the
neural network �eld�

To summarize� we have identi�ed two functions that are important for regression and clas�
si�cation� respectively� the conditional mean and the discriminant function� These are the two
functions that are of concern for simple linear models and� as we now discuss� for more complex
nonlinear models as well�

��� Nonlinear regression and nonlinear classi�cation

The linear regression and linear discriminant functions introduced in the previous section have the
merit of simplicity� but are severely restricted in their representational capabilities� A convenient
way to see this is to consider the geometrical interpretation of these models� When viewed in the
d�dimensional x�space� the linear regression function wT

x� w� is constant on hyper�planes which
are orthogonal to the vector w� For many practical applications we need to consider much more
general classes of function� We therefore seek representations for nonlinear mappings which can
approximate any given mapping to arbitrary accuracy� One way to achieve this is to transform the
original x using a set ofM nonlinear functions �j�x� where j 	 
� � � � �M � and then to form a linear
combination of these functions� so that�

yk�x� 	
X

j

wkj�j�x�� ���

For a su�ciently large value of M � and for a suitable choice of the �j�x�� such a model has the
desired universal approximation� properties� A familiar example� for the case of 
�dimensional
input spaces� is the simple polynomial� for which the �j�x� are simply successive powers of x and
the w�s are the polynomial coe�cients� Models of the form in Eq� � have the property that they
can be expressed as network diagrams in which there is a single layer of adaptive weights�

There are a variety of families of functions in one dimension that can approximate any con�
tinuous function to arbitrary accuracy� There is� however� an important issue which must be ad�
dressed� called the curse of dimensionality� If� for example� we consider an M th�order polynomial
then the number of independent coe�cients grows as dM �Bishop� 
����� For a typical medium�
scale application with� say� �� inputs a fourth�order polynomial �which is still quite restricted in
its representational capability� would have over ������ adjustable parameters� As we shall see in
Section ��� in order to achieve good generalization it is important to have more data points than
adaptive parameters in the model� and this is a serious problem for methods that have a power law
or exponential growth in the number of parameters�

A solution to the problem lies in the fact that� for most real�world data sets� there are strong
�often nonlinear� correlations between the input variables such that the data does not uniformly
�ll the input space but is e�ectively con�ned to a sub�space whose dimensionality is called the
intrinsic dimensionality of the data� We can take advantage of this phenomenon by considering
again a model of the form in Eq� � but in which the basis functions �j�x� are adaptive so that they
themselves contain weight parameters whose values can be adjusted in the light of the observed
data set� Di�erent models result from di�erent choices for the basis functions� and here we consider
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Figure �� An example of a feed�forward network having two layers of adaptive weights� The bias
parameters in the �rst layer are shown as weights from an extra input having a �xed value of x� � ��
Similarly� the bias parameters in the second layer are shown as weights from an extra hidden unit�
with activation again �xed at z� � ��

the two most common examples� The �rst of these is called the multilayer perceptron 	MLP
 and
is obtained by choosing the basis functions to be given by linear�logistic functions 	Eq� �
� This
leads to a multivariate nonlinear function that can be expressed in the form�

yk	x
 �
MX

j��

wkjg

�
dX
i��

wjixi � wj�

�
� wk�� 	


Here wj� and wk� are bias parameters� and the basis functions are called hidden units� The function
g	�
 is the logistic sigmoid function of Eq� �� This can also be represented as a network diagram
as in Figure �� Such a model is able to take account of the intrinsic dimensionality of the data
because the �rst�layer weights wji can adapt and hence orient the surfaces along which the basis
function response is constant� It has been demonstrated that models of this form can approximate
to arbitrary accuracy any continuous function� de�ned on a compact domain� provided the number
M of hidden units is su�ciently large� The MLP model can be extended by considering several
successive layers of weights� Note that the use of nonlinear activation functions is crucial� since if
g	�
 in Eq�  were replaced by the identity� the network would reduce to several successive linear
transformations which would itself be linear�
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The second common network model is obtained by choosing the basis functions �j�x� in Eq� �
to be functions of the radial variable x��j where �j is the center of the jth basis function� which
gives rise to the radial basis function �RBF� network model� The most common example uses
Gaussians of the form�

�j�x� � exp

�
�

�

	
�x� �j�

T���j �x� �j�

�
� ��
�

Here both the mean vector �j and the covariance matrix �j are considered to be adaptive param�
eters� The curse of dimensionality is alleviated because the basis functions can be positioned and
oriented in input space such as to overlay the regions of high data density and hence to capture
the nonlinear correlations between input variables� Indeed� a common approach to training an
RBF network is to use a two�stage procedure �Bishop� ���� In the �rst stage the basis function
parameters are determined using the input data alone� which corresponds to a density estimation
problem using a mixture model in which the component densities are given by the basis functions
�j�x�� In the second stage the basis function parameters are frozen and the second�layer weights
wkj are found by standard least�squares optimization procedures�

��� Decision trees

MLP and RBF networks are often contrasted in terms of the support of the basis functions that
compose them� MLP networks are often referred to as �global�� given that linear�logistic basis
functions are bounded away from zero over a signi�cant fraction of the input space� Accordingly� in
an MLP� each input vector generally gives rise to a distributed pattern over the hidden units� RBF
networks� on the other hand� are referred to as �local�� due to the fact that their Gaussian basis
functions typically have support over a local region of the input space� It is important to note�
however� that local support does not necessarily mean non�overlapping support� indeed� there is
nothing in the RBF model that prefers basis functions that have non�overlapping support� A third
class of model that does focus on basis functions with non�overlapping support is the decision tree

model �Breiman� et al�� ����� A decision tree is a regression or classi�cation model that can be
viewed as asking a sequence of questions about the input vector� Each question is implemented as
a linear discriminant� and a sequence of questions can be viewed as a recursive partitioning of the
input space� All inputs that arrive at a particular leaf of the tree de�ne a polyhedral region in the
input space� The collection of such regions can be viewed as a set of basis functions� Associated
with each basis function is an output value which �ideally� is close to the average value of the
conditional mean �for regression� or discriminant function �for classi�cation� a majority vote is also
used�� Thus the decision tree output can be written as a weighted sum of basis functions in the
same manner as a layered network�

As this discussion suggests� decision trees and MLP�RBF neural networks are best viewed as
being di�erent points along the continuum of models having overlapping or non�overlapping basis
functions� Indeed� as we show in the following section� decision trees can be treated probabilistically
as mixture models� and in the mixture approach the sharp discriminant function boundaries of
classical decision trees become smoothed� yielding partially�overlapping basis functions�

There are tradeo�s associated with the continuum of degree�of�overlap�in particular� non�
overlapping basis functions are generally viewed as being easier to interpret� and better able to
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reject noisy input variables that carry little information about the output� Overlapping basis
functions are often viewed as yielding lower variance predictions and as being more robust�

��� General mixture models

The use of mixture models is not restricted to density estimation� rather� the mixture approach can
be used quite generally to build complex models out of simple parts� To illustrate� let us consider
using mixture models to model a conditional density in the context of a regression or classi�cation
problem� A mixture model in this setting is referred to as a �mixtures of experts� model �Jacobs�
et al�� �		�
�

Suppose that we have at our disposal an elemental conditional model p�tjx�w�� Consider a
situation in which the conditional mean or discriminant exhibits variation on a local scale that is
a good match to our elemental model� but the variation diers in dierent regions of the input
space� We could use a more complex network to try to capture this global variation� alternatively
we might wish to combine local variants of our elemental models in some manner� This can be
achieved by de�ning the following probabilistic mixture�

p�tjx�w� �
MX

i��

p�ijx�v�p�tjx� i�wi�� ����

Comparing this mixture to the unconditional mixture de�ned earlier �Eq� ��� we see that both
the mixing proportions and the component densities are now conditional densities dependent on
the input vector x� The former dependence is particularly important�we now view the mixing
proportion p�ijx�v� as providing a probabilistic device for choosing dierent elemental models
��experts�� in dierent regions of the input space� A learning algorithm that chooses values for the
parameters v as well as the values for the parameters wi can be viewed as attempting to �nd both
a good partition of the input space and a good �t to the local models within that partition�

This approach can be extended recursively by considering mixtures of models where each
model may itself be a mixture model �Jordan and Jacobs� �		�
� Such a recursion can be viewed as
providing a probabilistic interpretation for the decision trees discussed in the previous section� We
view the decisions in the decision tree as forming a recursive set of probabilistic selections among
a set of models� The total probability of a target t given an input x is the sum across all paths
down the tree�

p�tjx�w� �
MX

i��

p�ijx�u�
MX

j��

p�jjx� i�vi� � � �p�tjx� i� j� � � � �wij����� ����

where i and j are the decisions made at the �rst level and second level of the tree� respectively�
and p�tjx� i� j� � � � �wij���� is the elemental model at the leaf of the tree de�ned by the sequence of
decisions� This probabilistic model is a conditional hierarchical mixture� Finding parameter values
u� vi� etc� to �t this model to data can be viewed as �nding a nested set of partitions of the input
space and �tting a set of local models within the partition�

The mixture model approach can be viewed as a special case of a general methodology known
as learning by committee� Bishop ��		�
 provides a discussion of committees� we will also meet
them in the section on Bayesian methods later in the chapter�

	



� Learning from Data

The previous section has provided a selection of models to choose from� we now face the problem
of matching these models to data� In principle the problem is straightforward� given a family of
models of interest we attempt to �nd out how probable each of these models is in the light of the
data� We can then select the most probable model �a selection rule known as maximum a posteriori

or MAP estimation�� or we can select some highly probable subset of models� weighted by their
probability �an approach that we discuss below in the section on Bayesian methods�� In practice
there are a number of problems to solve� beginning with the speci�cation of the family of models
of interest� In the simplest case� in which the family can be described as a �xed structure with
varying parameters �e�g�� the class of feedforward MLP�s with a �xed number of hidden units�� the
learning problem is essentially one of parameter estimation� If on the other hand the family is not
easily viewed as a �xed parametric family �e�g�� feedforward MLP�s with variable number of hidden
units�� then we must solve the model selection problem�

In this section we discuss the parameter estimation problem� The goal will be to �nd MAP
estimates of the parameters by maximizing the probability of the parameters given the data D� We
compute this probability using Bayes rule�

p�wjD� 	
p�Djw�p�w�

p�D�
� �
��

where we see that to calculate MAP estimates we must maximize the expression in the numerator
�the denominator does not depend on w�� Equivalently we can minimize the negative logarithm of
the numerator� We thus de�ne the following cost function J�w��

J�w� 	 � ln p�Djw�� ln p�w�� �
��

which we wish to minimize with respect to the parameters w� The �rst term in this cost function
is a �negative� log likelihood� If we assume that the elements in the training set D are conditionally
independent of each other given the parameters� then the likelihood factorizes into a product form�
For density estimation we have�

p�Djw� 	
NY

n��

p�xnjw� �
�

and for classi�cation and regression we have�

p�Djw� 	
NY

n��

p�tnjxn�w�� �
��

In both cases this yields a log likelihood which is the sum of the log probabilities for each individual
data point� For the remainder of this section we will assume this additive form� moreover� we will
assume that the log prior probability of the parameters is uniform across the parameters and
drop the second term� Thus we focus on maximum likelihood �ML� estimation� where we choose
parameter values wML that maximize ln p�Djw��
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��� Likelihood�based cost functions

Regression� classi�cation and density estimation make di�erent probabilistic assumptions about the
form of the data and therefore require di�erent cost functions�

Eq� � de�nes a probabilistic model for regression� The model is a conditional density for the
targets t in which the targets are distributed as Gaussian random variables �assuming Gaussian
errors �� with mean values f�x�� We now write the conditional mean as f�x�w� to make explicit
the dependence on the parameters w� Given the training set D � fxn� tng

N
n��� and given our

assumption that the targets tn are sampled independently �given the inputs xn and the parameters
w�� we obtain	

J�w� �



�

X

n

ktn � f�xn�w�k�� �
��

where we have assumed an identity covariance matrix and dropped those terms that do not depend
on the parameters� This cost function is the standard least squares cost function which is tradi
tionally used in neural network training for realvalued targets� Minimization of this cost function
is typically achieved via some form of gradient optimization� as we discuss in the following section�

Classi�cation problems di�er from regression problems in the use of discretevalued targets� and
the likelihood accordingly takes a di�erent form� For binary classi�cation the Bernoulli probability
model p�tjx�w� � yt�
� y���t is natural� where we use y to denote the probability p�t � 
jx�w��
This model yields the following log likelihood	

J�w� � �
X

n

�tn ln yn � �
� tn� ln�
� yn�� � �
��

which is known as the cross entropy function� It can be minimized using the same generic opti
mization procedures as are used for least squares�

For multiway classi�cation problems in which there are C categories� where C � �� the
multinomial distribution is natural� De�ne tn such that its elements tn�i are one or zero according
to whether the nth data point belongs to the ith category� and de�ne yn�i to be the network�s
estimate of the posterior probability of category i for data point n� i�e�� yn�i � p�tn�i � 
jxn�w��
Given these de�nitions we obtain the following cost function	

J�w� � �
X

n

X

i

tn�i ln yn�i� �
��

which again has the form of a cross entropy�
We now turn to density estimation as exempli�ed by Gaussian mixture modeling� The prob

abilistic model in this case is that given in Eq� �� Assuming Gaussian component densities with
arbitrary covariance matrices� we obtain the following cost function	

J�w� � �
X

n

ln
X

i

�i



j�ij���
exp

�
�



�
�xn � �i�

T���

i �xn � �i�

�
� ����

where the parameters w are the collection of mean vectors �i� the covariance matrices �i� and
the mixing proportions �i� A similar cost function arises for the generalized mixture models �cf�
Eq� 
���







��� Gradients of the cost function

Once we have de�ned a probabilistic model� obtained a cost function and found an e�cient pro�
cedure for calculating the gradient of the cost function� the problem can be handed o� to an
optimization routine� Before discussing optimization procedures� however� it is useful to exam�
ine the form that the gradient takes for the examples that we have discussed in the previous two
sections�

The ith output unit in a layered network is endowed with a rule for combining the activations
of units in earlier layers� yielding a quantity that we denote by zi� and a function that converts zi
into the output yi� For regression problems� we assume linear output units such that yi � zi� For
binary classi�cation problems� our earlier discussion showed that a natural output function is the
logistic� yi � 	�
	� e�zi�� For multi�way classi�cation� it is possible to generalize the derivation of
the logistic function to obtain an analogous representation for the multi�way posterior probabilities
known as the softmax function cf� Bishop� 	�����

yi �
ezi
P

k e
zk

� 
�	�

where yi represents the posterior probability of category i�
If we now consider the gradient of J
w� with respect to zi� it turns out that we obtain a single

canonical expression of the following form�

�J

�w
�
X

i


ti � yi�
�zi
�w

� 
���

As discussed by Rumelhart� et al� 	����� this form for the gradient is predicted from the theory
of Generalized Linear Models McCullagh and Nelder� 	����� where it is shown that the linear�
logistic� and softmax functions are 
inverse� canonical links for the Gaussian� Bernoulli� and multi�
nomial distributions� respectively� Canonical links can be found for all of the distributions in the
exponential family� thus providing a solid statistical foundation for handling a wide variety of data
formats at the output layer of a network� including counts� time intervals and rates�

The gradient of the cost function for mixture models has an interesting interpretation� Taking
the partial derivative of J
w� in Eq� �� with respect to �i� we �nd�

�J

��i

�
X

n

hn�i�i
xn � �i�� 
���

where hn�i is de�ned as follows�

hn�i �
�ij�ij

���� expf��

�

xn � �i�

T���

i 
xn � �i�gP
k �kj�k j���� expf�

�

�

xn � �k�

T���

k 
xn � �k�g
� 
���

When summed over i� the quantity hn�i sums to one� and is often viewed as the �responsibility� or
�credit� assigned to the ith component for the nth data point� Indeed� interpreting Eq� �� using
Bayes rule shows that hn�i is the posterior probability that the nth data point is generated by the
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ith component Gaussian� A learning algorithm based on this gradient will move the ith mean �i

toward the data point xn� with the e�ective step size proportional to hn�i�
The gradient for a mixture model will always take the form of a weighted sum of the gradients

associated with the component models� where the weights are the posterior probabilities associated
with each of the components� The key computational issue is whether these posterior weights can
be computed e�ciently� For Gaussian mixture models� the calculation �Eq� ��� is clearly e�cient�
For decision trees there are a set of posterior weights associated with each of the nodes in the tree�
and a recursion is available that computes the posterior probabilities in an upward sweep 	Jordan
and Jacobs� 
����� Mixture models in the form of a chain are known as hidden Markov models�
and the calculation of the relevant posterior probabilities is performed via an e�cient algorithm
known as the BaumWelch algorithm�

For general layered network structures� a generic algorithm known as �backpropagation� is
available to calculate gradient vectors 	Rumelhart� et al�� 
����� Backpropagation is essentially the
chain rule of calculus realized as a graphical algorithm� As applied to layered networks it provides
a simple and e�cient method that calculates a gradient in O�W � time per training pattern� where
W is the number of weights�

��� Optimization algorithms

By introducing the principle of maximum likelihood in Section 
� we have expressed the problem of
learning in neural networks in terms of the minimization of a cost function J�w� which depends on
a vector w of adaptive parameters� An important aspect of this problem is that the gradient vector
rwJ can be evaluated e�ciently �for example by backpropagation�� Gradientbased minimization
is a standard problem in unconstrained nonlinear optimization� for which many powerful techniques
have been developed over the years� Such algorithms generally start by making an initial guess for
the parameter vector w and then iteratively updating the vector in a sequence of steps�

w
����� � w��� ��w��� ����

where � denotes the step number� The initial parameter vector w��� is often chosen at random� and
the �nal vector represents a minimum of the cost function at which the gradient vanishes� Due to
the nonlinear nature of neural network models� the cost function is generally a highly complicated
function of the parameters� and may possess many such minima� Di�erent algorithms di�er in how
the update �w��� is computed�

The simplest such algorithm is called gradient descent and involves a parameter update which
is proportional to the negative of the cost function gradient � � ��rE where � is a �xed constant
called the learning rate� It should be stressed that gradient descent is a particularly ine�cient
optimization algorithm� Various modi�cations have been proposed� such as the inclusion of a
momentum term� to try to improve its performance� In fact much more powerful algorithms are
readily available� as described in standard textbooks such as 	Fletcher� 
����� Two of the best
known are called conjugate gradients and quasi�Newton �or variable metric� methods� For the
particular case of a sumofsquares cost function� the Levenberg�Marquardt algorithm can also be
very e�ective� Software implementations of these algorithms are widely available�
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The algorithms discussed so far are called batch since they involve using the whole data set for
each evaluation of the cost function or its gradient� There is also a stochastic or on�line version of
gradient descent in which� for each parameter update� the cost function gradient is evaluated using
just one of the training vectors at a time �which are then cycled either in order or in a random
sequence�� While this approach fails to make use of the power of sophisticated methods such as
conjugate gradients� it can prove e�ective for very large data sets� particularly if there is signi�cant
redundancy in the data�

��� Hessian matrices� error bars and pruning

After a set of weights have been found for a neural network using an optimization procedure� it is
often useful to examine second�order properties of the �tted network as captured in the Hessian
matrix H � ��J��w�wT � E	cient algorithms have been developed to compute the Hessian matrix
in time O�W �� 
Bishop� ����� As in the case of the calculation of the gradient by backpropagation�
these algorithms are based on recursive message passing in the network�

One important use of the Hessian matrix lies in the calculation of error bars on the outputs
of a network� If we approximate the cost function locally as a quadratic function of the weights
�an approximation which is equivalent to making a Gaussian approximation for the log likelihood��
then the estimated variance of the ith output yi can be shown to be�

���yi �

�
�yi
�w

�T

H��

�
�yi
�w

�
� ����

where the gradient vector �yi��w can be calculated via backpropagation�
The Hessian matrix is also useful in pruning algorithms� A pruning algorithm deletes weights

from a �tted network to yield a simpler network that may outperform a more complex� over�tted
network �see below�� and may be easier to interpret� In this setting� the Hessian is used to approx�
imate the increase in the cost function due to the deletion of a weight� A variety of such pruning
algorithms are available 
cf� Bishop� �����

��� Complexity control

In previous sections we have introduced a variety of models for representing probability distri�
butions� we have shown how the parameters of the models can be optimized by maximizing the
likelihood function� and we have outlined a number of powerful algorithms for performing this
minimization� Before we can apply this framework in practice there is one more issue we need to
address� which is that of model complexity� Consider the case of a mixture model given by Eq� ��
The number of input variables will be determined by the particular problem at hand� However�
the number M of component densities has yet to be speci�ed� Clearly if M is too small the model
will be insu	ciently �exible and we will obtain a poor representation of the true density� What
is not so obvious is that if M is too large we can also obtain poor results� This e�ect is known
as over�tting and arises because we have a data set of �nite size� It is illustrated using a simple
example of mixture density estimation in Figure �� Here a set of ��� data points in one dimension
has been generated from a distribution consisting of a mixture of two Gaussians �shown by the
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Figure �� E�ects of model complexity illustrated by modeling a mixture of two Gaussians �shown
by the dashed curves� using a mixture of M Gaussians �shown by the solid curves�� The results
are obtained for �� cycles of EM�

	




dashed curves�� This data set has then been �tted by a mixture of M Gaussians by use of the EM
algorithm� We see that a model with � component �M � �� gives a poor representation of the true
distribution from which the data was generated� and in particular is unable to capture the bimodal
aspect� ForM � � the model gives a good �t� as we expect since the data was itself generated from
a two	component Gaussian mixture� However� increasing the number of components to M � �

gives a poorer �t� even though this model contains the simpler models as special cases�

The problem is a very fundamental one and is associated with the fact that we are trying to infer
an entire distribution function from a �nite number of data points� which is necessarily an ill	posed
problem� In regression for example there are in�nitely many functions which will give a perfect �t
to the �nite number of data points� If the data are noisy� however� the best generalization will be
obtained for a function which does not �t the data perfectly but which captures the underlying
function from which the data were generated� By increasing the �exibility of the model we are able
to obtain ever better �ts to the training data� and this is re�ected in a steadily increasing value for
the likelihood function at its maximum� Our goal is to model the true underlying density function
from which the data was generated since this allows us to make the best predictions for new data�
We see that the best approximation to this density occurs for an intermediate value of M �

The same issue arises in connection with nonlinear regression and classi�cation problems� For
example� the number M of hidden units in an MLP network controls the model complexity and
must be optimized to give the best generalization� In a practical application we can train a variety
of di�erent models having di�erent complexity� and compare their generalization performance using
an independent validation set� and then select the model with the best generalization� In fact the
process of optimizing the complexity using a validation set can lead to some partial over�tting to
the validation data itself� and so the �nal performance of the selected model should be con�rmed
using a third independent data set called a test set�

Some theoretical insight into the problem of over�tting can be obtained by decomposing the
error into the sum of bias and variance terms Geman� et al�� ������ A model which is too in�exible
is unable to represent the true structure in the underlying density function and this gives rise to
a high bias� Conversely a model which is too �exible becomes tuned to the speci�c details of the
particular data set and gives a high variance� The best generalization is obtained from the optimum
trade	o� of bias against variance�

As we have already remarked� the problem of inferring an entire distribution function from a
�nite data set is fundamentally ill	posed since there are in�nitely many solutions� The problem
only becomes well	posed when some additional constraint is imposed� This constraint might be
that we model the data using a network having a limited number of hidden units� Within the range
of functions which this model can represent there is then a unique function which best �ts the
data� Implicitly we are assuming that the underlying density function from which the data were
drawn is relatively smooth� Instead of limiting the number of parameters in the model� we can
encourage smoothness more directly using the technique of regularization� This involves adding a
penalty term � to the original cost function J to give a total cost function eJ of the form�

eJ � J � �� ����

where � is called a regularization coe�cient� The network parameters are determined by minimizing
eJ � and the value of � controls the degree of in�uence of the penalty term �� In practice � is typically
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chosen to encourage smooth functions� The simplest example is called weight decay and consists of
the sum of the squares of all the adaptive parameters in the model�

� �
X

i

w
�

i ����

Consider the e	ect of such a term on the MLP function �Eq� 
�� If the weights take very small
values then the network outputs become approximately linear functions of the inputs �since the
sigmoidal function is approximately linear for small values of its argument�� The value of � in
Eq� �� controls the e	ective complexity of the model� so that for large � the model is oversmoothed
�corresponding to high bias� while for small � the model can over�t �corresponding to high variance��
We can therefore consider a network with a relatively large number of hidden units and control the
e	ective complexity by changing �� In practice� a suitable value for � can be found by seeking the
value which gives the best performance on a validation set�

The weight decay regularizer �Eq� ��� is simple to implement but su	ers from a number of
limitations� Regularizers used in practice may be more sophisticated and may contain multiple
regularization coe�cients �Neal� �

���

Regularization methods can be justi�ed within a general theoretical framework known as struc�
tural risk minimization �Vapnik� �

��� Structural risk minimization provides a quantitative mea
sure of complexity known as the VC dimension� The theory shows that the VC dimension predicts
the di	erence between performance on a training set and performance on a test set� thus� the sum
of log likelihood and �some function of� VC dimension provides a measure of generalization per
formance� This motivates regularization methods �Eq� ��� and provides some insight into possible
forms for the regularizer ��

��� Bayesian viewpoint

In earlier sections we discussed network training in terms of the minimization of a cost function
derived from the principle of maximum a posteriori or maximum likelihood estimation� This ap
proach can be seen as a particular approximation to a more fundamental� and more powerful�
framework based on Bayesian statistics� In the maximum likelihood approach the weights w are
set to a speci�c value wML determined by minimization of a cost function� However� we know that
there will typically be other minima of the cost function which might give equally good results�
Also� weight values close to wML should give results which are not too di	erent from those of the
maximum likelihood weights themselves�

These e	ects are handled in a natural way in the Bayesian viewpoint� which describes the
weights not in terms of a speci�c set of values� but in terms of a probability distribution over
all possible values� As discussed earlier �cf� Eq� ���� once we observe the training data set D
we can compute the corresponding posterior distribution using Bayes� theorem� based on a prior

distribution function p�w� �which will typically be very broad�� and a likelihood function p�Djw��

p�wjD� �
p�Djw�p�w�

p�D�
� ��
�

��



The likelihood function will typically be very small except for values of w for which the network
function is reasonably consistent with the data� Thus the posterior distribution p�wjD� will be much
more sharply peaked than the prior distribution p�w� �and will typically have multiple maxima��
The quantity we are interested in is the predicted distribution of target values t for a new input
vector x once we have observed the data set D� This can be expressed as an integration over the
posterior distribution of weights of the form�

p�tjx�D� �

Z
p�tjx�w�p�wjD� dw ����

where p�tjx�w� is the conditional probability model discussed in the introduction�
If we suppose that the posterior distribution p�wjD� is sharply peaked around a single most�

probable value wMP	 then we can write Eq� �� in the form�

p�tjx�D� � p�tjx�wMP�

Z
p�wjD� dw ��
�

� p�tjx�wMP� ����

and so predictions can be made by �xing the weights to their most probable values� We can �nd
the most probable weights by maximizing the posterior distribution	 or equivalently by minimizing
its negative logarithm� Using Eq� �	 we see that wMP is determined by minimizing a regularized
cost function of the form in Eq� �� in which the negative log of the prior � ln p�w� represents the
regularizer ��� For example	 if the prior consists of a zero�mean Gaussian with variance ��� then
we obtain the weight�decay regularizer of Eq� ���

The posterior distribution will become sharply peaked when the size of the data set is large
compared to the number of parameters in the network� For data sets of limited size	 however	
the posterior distribution has a �nite width and this adds to the uncertainty in the predictions
for t which can be expressed in terms of error bars� Bayesian error bars can be evaluated using
a local Gaussian approximation to the posterior distribution �MacKay	 
��� The presence of
multiple maxima in the posterior distribution also contributes to the uncertainties in predictions�
The capability to assess these uncertainties can play a crucial role in practical applications�

The Bayesian approach can also deal with more general problems in complexity control� This
can be done by considering the probabilities of a set of alternative models	 given the data set�

p�HijD� �
p�DjHi�p�Hi�

p�D�
� ����

Here di�erent models can also be interpreted as di�erent values of regularization parameters as these
too control model complexity� If the models are given the same prior probabilities p�Hi� then they
can be ranked by considering the evidence p�DjHi� which itself can be evaluated by integration over
the model parameters w� We can simply select the model with the greatest probability� However	 a
full Bayesian treatment requires that we form a linear combination of the predictions of the models
in which the weighting coe�cients are given by the model probabilities�

In general	 the required integrations	 such as that in Eq� ��	 are analytically intractable� One
approach is to approximate the posterior distribution by a Gaussian centered on wMP and then
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to linearize p�tjx�w� about wMP so that the integration can be performed analytically �MacKay�
�����	 Alternatively� sophisticated Monte Carlo methods can be employed to evaluate the integrals
numerically �Neal� ���
�	 An important aspect of the Bayesian approach is that there is no need
to keep data aside in a validation set as is required when using maximum likelihood	 In practi�
cal applications for which the quantity of available data are limited� it is found that a Bayesian
treatment generally outperforms other approaches	

��� Pre�processing� invariances and prior knowledge

We have already seen that neural networks can approximate essentially arbitrary nonlinear func�
tional mappings between sets of variables	 In principle we could therefore use a single network
to transform the raw input variables into the required �nal outputs	 However� in practice for all
but the simplest problems the results of such an approach can be improved upon considerably by
incorporating various forms of pre�processing� for reasons which we shall outline below	

One of the simplest and most common forms of pre�processing consists of a simple normaliza�
tion of the input� and possibly also target� variables	 This may take the form of a linear rescaling
of each input variable independently to give it zero mean and unit variance over the training set	
For some applications the original input variables may span widely dierent ranges	 Although a
linear rescaling of the inputs is equivalent to a dierent choice of �rst�layer weights� in practice
the optimization algorithm may have considerable di�culty in �nding a satisfactory solution when
typical input values are substantially dierent	 Similar rescaling can be applied to the output values
in which case the inverse of the transformation needs to be applied to the network outputs when
the network is presented with new inputs	 Pre�processing is also used to encode data in a suitable
form	 For example� if we have categorical variables such as �red�� �green� and �blue�� these may be
encoded using a ��of�� binary representation	

Another widely used form of pre�processing involves reducing the dimensionality of the input
space	 Such transformations may result in loss of information in the data� but the overall eect
can be a signi�cant improvement in performance as a consequence of the curse of dimensionality
discussed in Section �	�	 The �nite data set is better able to specify the required mapping in
the lower�dimensional space	 Dimensionality reduction may be accomplished by simply selecting
a subset of the original variables� but more typically involves the construction of new variables
consisting of linear or nonlinear combinations of the original variables called features	 A standard
technique for dimensionality reduction is principal component analysis �Anderson� ���
�	 Such
methods� however� make use only of the input data and ignore the target values� and can sometimes
be signi�cantly sub�optimal	

Yet another form of pre�processing involves correcting de�ciencies in the original data	 A
common occurrence is that some of the input variables are missing for some of the data points	
Correction of this problem in a principled way requires that the probability distribution p�x� of
input data be modeled	

One of the most important factors determining the performance of real�world applications of
neural networks is the use of prior knowledge which is information additional to that present in the
data	 As an example� consider the problem of classifying hand�written digits discussed in Section �	
The most direct approach would be to collect a large training set of digits and to train a feedforward
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network to map from the input image to a set of �� output values representing posterior probabilities
for the �� classes� However� we know that the classi�cation of a digit should be independent of its
position within the input image� One way of achieving such translation invariance is to make use
of the technique of shared weights� This involves a network architecure having many hidden layers
in which each unit takes inputs only from a small patch� called a receptive �eld� of units in the
previous layer� By a process of constraining neighboring units to have common weights� it can be
arranged that the output of the network is insensitive to translations of the input image� A further
bene�t of weight sharing is that the number of independent parameters is much smaller than the
number of weights� which assists with the problem of model complexity� This approach is the basis
for the highly successful US postal code recognition system of �LeCun� et al�� ����	� An alternative
to shared weights is to enlargen the training set arti�cially by generating 
virtual examples� based
on applying translations and other transformations to the original training set �Poggio and Vetter�
����	�

� Graphical models

Neural networks express relationships between variables by utilizing the representational language
of graph theory� Variables are associated with nodes in a graph and transformations of variables
are based on algorithms that propagate numerical messages along the links of the graph� More
over� the graphs are often accompanied by probabilistic interpretations of the variables and their
interrelationships� As we have seen� such probabilistic interpretations allow a neural network to be
understood as a form of probabilistic model� and reduce the problem of learning the weights of a
network to a problem in statistics�

Related graphical models have been studied throughout statistics� engineering and AI in recent
years� Hidden Markov models� Kalman �lters� and path analysis models are all examples of graph
ical probabilistic models that can be �tted to data and used to make inferences� The relationship
between these models and neural networks is rather strong� indeed it is often possible to reduce
one kind of model to the other� In this section� we examine these relationships in some detail and
provide a broader characterization of neural networks as members of a general family of graphical
probabilistic models�

Many interesting relationships have been discovered between graphs and probability distribu
tions �Spiegelhalter� et al�� ����	� �Pearl� ����	� These relationships derive from the use of graphs
to represent conditional independencies among random variables� In an undirected graph� there
is a direct correspondence between conditional independence and graph separation�random vari
ables Xi and Xk are conditionally independent given Xj if nodes Xi and Xk are separated by
node Xj �we use the symbol 
Xi� to represent both a random variable and a node in a graph��
This statement remains true for sets of nodes �see Figure ��a��� Directed graphs have a somewhat
di�erent semantics� due to the ability of directed graphs to represent 
induced dependencies�� An
induced dependency is a situation in which two nodes which are marginally independent become
conditionally dependent given the value of a third node �see Figure ��b��� Suppose� for example�
that Xi and Xk represent independent coin tosses� and Xj represents the sum of Xi and Xk� Then
Xi and Xk are marginally independent but are conditionally dependent given Xj � The semantics of
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Figure �� �a� An undirected graph in which Xi is independent of Xj given Xk and Xl� and Xk

is independent of Xl given Xi and Xj � �b� A directed graph in which Xi and Xk are marginally
independent but are conditionally dependent given Xj �

independence in directed graphs is captured by a graphical criterion known as d�separation �Pearl�
�	

�� which di�ers from undirected separation only in those cases in which paths have two arrows
arriving at the same node �as in Figure ��b���

Although the neural network architectures that we have discussed until now have all been
based on directed graphs� undirected graphs also play an important role in neural network re
search� Constraint satisfaction architectures� including the Hop�eld network �Hop�eld� �	
�� and
the Boltzmann machine �Hinton and Sejnowski� �	
��� are the most prominent examples� A Boltz
mann machine is an undirected probabilistic graph that respects the conditional independency
semantics described above �cf� Figure ��a��� Each node in a Boltzmann machine is a binaryvalued
random variable Xi �or more generally a discretevalued random variable�� A probability distribu
tion on the �N possible con�gurations of such variables is de�ned via an energy function E� Let
Jij be the weight on the link between Xi and Xj� let Jij � Jji� let � index the con�gurations� and
de�ne the energy of con�guration � as follows�

E� � �
X

i�j

JijX
�
i X

�
j � ����

The probability of con�guration � is then de�ned via the Boltzmann distribution�

P� �
e�E��T
P

� e
�E��T

� ����

where the temperature T provides a scale for the energy�
An example of a directed probabilistic graph is the hidden Markov model �HMM�� An HMM

is de�ned by a set of state variables Hi� where i is generally a time or a space index� a set of output
variables Oi� a probability transition matrix A � p�HijHi���� and an emission matrix B � p�OijHi��
The directed graph for an HMM is shown in Figure ��a�� As can be seen from considering the
separatory properties of the graph� the conditional independencies of the HMM are de�ned by the
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Figure �� �a� A directed graph representation of an HMM� Each horizontal link is associated with
the transition matrix A� and each vertical link is associated with the emission matrix B� �b� An
HMM as a Boltzmann machine� The parameters on the horizontal links are logarithms of the
entries of the A matrix� and the parameters on the vertical links are logarithms of the entries of
the B matrix� The two representations yield the same joint probability distribution�

following Markov conditions�

Hi � fH�� O�� � � � � Hi��� Oi��� Oi��gjHi��� � � i � N ����

and
Oi � fH�� O�� � � � � Hi��� Oi��gjHi� � � i � N� ��	�

where the symbol � is used to denote independence�
Figure ��b� shows that it is possible to treat an HMM as a special case of a Boltzmann machine


Luttrell� ����� 
Saul and Jordan� ������ The probabilistic structure of the HMM can be captured
by de�ning the weights on the links as the logarithms of the corresponding transition and emission
probabilities� The Boltzmann distribution �Eq� ��� then converts the additive energy into the
product form of the standard HMM probabilility distribution� As we will see� this reduction of a
directed graph to an undirected graph is a recurring theme in the graphical model formalism�

General mixture models are readily viewed as graphical models 
Buntine� ������ For example�
the unconditional mixture model of Eq� � can be represented as a graphical model with two nodes�a
multinomial �hidden� node which represents the selected component� a �visible� node representing
x� and a directed link from the hidden node to the visible node �see below for the hidden�visible
distinction�� Conditional mixture models 
Jacobs� et al�� ����� simply require another visible node
with directed links to the hidden node and the visible nodes� Hierarchical conditional mixture
models 
Jordan and Jacobs� ����� require a chain of hidden nodes� one hidden node for each level
of the tree�

Within the general framework of probabilistic graphical models� it is possible to tackle general
problems of inference and learning� The key problem that arises in this setting is the problem
of computing the probabilities of certain nodes� which we will refer to as hidden nodes� given the
observed values of other nodes� which we will refer to as visible nodes� For example� in an HMM� the
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variables Oi are generally treated as visible� and it is desired to calculate a probability distribution
on the hidden states Hi� A similar inferential calculation is required in the mixture models and the
Boltzmann machine�

Generic algorithms have been developed to solve the inferential problem of the calculation of
posterior probabilities in graphs� Although a variety of inference algorithms have been developed�
they can all be viewed as essentially the same underlying algorithm �Shachter� Andersen� and
Szolovits� ������ Let us consider undirected graphs� A special case of an undirected graph is a
triangulated graph �Spiegelhalter� et al�� ������ in which any cycle having four or more nodes has
a chord� For example� the graph in Figure 	
a� is not triangulated� but becomes triangulated
when a link is added between nodes Xi and Xj � In a triangulated graph� the cliques of the graph
can be arranged in the form of a junction tree� which is a tree having the property that any
node that appears in two di�erent cliques in the tree also appears in every clique on the path
that links the two cliques 
the running intersection property��� This cannot be achieved in non�
triangulated graphs� For example� the cliques in Figure 	
a� are fXi� Xkg� fXk� Xjg� fXj � Xlg�
and it is not possible to arrange these cliques into a tree that obeys the running intersection
property� If a chord is added the resulting cliques are fXi� Xj � Xkg and fXi� Xj� Xlg� and these
cliques can be arranged as a simple chain that trivially obeys the running intersection property�
In general� it turns out that the probability distributions corresponding to triangulated graphs can
be characterized as decomposable� which implies that they can be factorized into a product of local
functions 
potentials�� associated with the cliques in the triangulated graph�� The calculation of
posterior probabilities in decomposable distributions is straightforward� and can be achieved via a
local message�passing algorithm on the junction tree �Spiegelhalter� et al�� ������

Graphs that are not triangulated can be turned into triangulated graphs by the addition of
links� If the potentials on the new graph are de�ned suitably as products of potentials on the
original graph� then the independencies in the original graph are preserved� This implies that the
algorithms for triangulated graphs can be used for all undirected graphs� an untriangulated graph
is �rst triangulated 
see Figure ��� Moreover� it is possible to convert directed graphs to undirected
graphs in a manner that preserves the probabilistic structure of the original graph �Spiegelhalter�
et al�� ������ This implies that the junction tree algorithm is indeed generic� it can be applied to
any graphical model�

The problem of calculating posterior probabilities on graphs is NP�hard� thus� a major issue in
the use of the inference algorithms is the identi�cation of cases in which they are e�cient� Chain
structures such as HMM�s yield e�cient algorithms� and indeed the classical forward�backward
algorithm for HMM�s is a special� e�cient case of the junction tree algorithm �Heckerman� Jordan�
and Smyth� ������ Decision tree structures such as the hierarchical mixture of experts yield e��
cient algorithms� and the recursive posterior probability calculation of �Jordan and Jacobs� �����
described earlier is also a special case of the junction tree algorithm� All of the simpler mixture
model calculations described earlier are therefore also special cases� Another interesting special

�An interesting example is a Boltzmann machine on a triangulated graph� The potentials are products of exp�Jij�
factors� where the product is taken over all �i� j� pairs in a particular clique� Given that the product across potentials
must be the joint probability� this implies that the partition function �the denominator of Eq� ��� must be unity in
this case�
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Xi Xj

Xk Xl

Xm Xn

XiXjXk
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XlXk Xm
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Figure �� The basic structure of the junction tree algorithm for undirected graphs� The graph in �a�
is �rst triangulated �b�� then the cliques are identi�ed �c�� and arranged into a tree �d�� Products
of potential functions on the nodes in �d� yield probability distributions on the nodes in �a��

case is the state estimation algorithm of the Kalman �lter �Shachter and Kenley� 	
�
�� Finally�
there are a variety of special cases of the Boltzmann machine which are amenable to the exact
calculations of the junction tree algorithm �Saul and Jordan� 	

��

For graphs that are outside of the tractable categories of trees and chains� the junction tree
algorithm often performs surprisingly well� but for highly connected graphs the algorithm can be
too slow� In such cases� approximate algorithms such as Gibbs sampling are utilized� A virtue of
the graphical framework is that Gibbs sampling has a generic form� which is based on the notion of
a Markov boundary �Pearl� 	
���� A special case of this generic form is the stochastic update rule
for general Boltzmann machines�

Our discussion has emphasized the unifying framework of graphical models both for expressing
probabilistic dependencies in graphs and for describing algorithms that perform the inferential
step of calculating posterior probabilities on these graphs� The uni�cation goes further� however�
when we consider learning� A generic methodology known as the Expectation�Maximization �EM�
algorithm is available for MAP and Bayesian estimation in graphical models �Dempster� Laird� and
Rubin� 	
���� EM is an iterative method� based on two alternating steps� an E step� in which
the values of hidden variables are estimated� based on the current values of the parameters and
the values of visible variables� and an M step� in which the parameters are updated based on
the estimated values obtained from the E step� Within the framework of the EM algorithm� the
junction tree algorithm can readily be viewed as providing a generic E step� Moreover� once the
estimated values of the hidden nodes are obtained from the E step� the graph can be viewed as
fully observed� and the M step is a standard MAP or ML problem� The standard algorithms for all
of the tractable architectures described above �mixtures� trees and chains� are in fact instances of
this general graphical EM algorithm� and the learning algorithm for general Boltzmann machines
is a special case of a generalization of EM known as GEM �Dempster� et al�� 	
����

What about the case of feedforward neural networks such as the multilayer perceptron� It
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is in fact possible to associate binary hidden values with the hidden units of such a network �cf�
our earlier discussion of the logistic function� see also �Amari� ����	
 and apply the EM algorithm
directly� For N hidden units� however� there are �N patterns whose probabilities must be calculated
in the E step� For large N � this is an intractable computation� and recent research has therefore
begun to focus on fast methods for approximating these distributions �Hinton� et al�� ����	� �Saul�
et al�� ����	�
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Further information

In this chapter we have emphasized the links between neural networks and statistical pattern
recognition� A more extensive treatment from the same perspective can be found in �Bishop� ������
For a view of recent research in the �eld� the proceedings of the annual NIPS �Neural Information
Processing Systems� MIT Press conferences are highly recommended�

Neural computing is now a very broad �eld and there are many topics which have not been
discussed for lack of space� Here we aim to provide a brief overview of some of the more signi�cant
omissions� and to give pointers to the literature�

The resurgence of interest in neural networks during the ��	��s was due in large part to work
on the statistical mechanics of fully connected networks having symmetric connections �i�e� if unit
i sends a connection to unit j then there is also a connection from unit j back to unit i with the
same weight value� We have brie
y discussed such systems� a more extensive introduction to this
area can be found in �Hertz� et al�� ������

The implementation of neural networks in specialist VLSI hardware has been the focus of much
research� although by far the majority of work in neural computing is undertaken using software
implementations running on standard platforms�

An implicit assumption throughout most of this chapter is that the processes which give rise to
the data are stationary in time� The techniques discussed here can readily be applied to problems
such as time series forecasting� provided this stationarity assumption is valid� If� however� the
generator of the data is itself evolving with time then more sophisticated techniques must be used�
and these are the focus of much current research �see Bengio� ������

One of the original motivations for neural networks was as models of information processing
in biological systems such as the human brain� This remains the subject of considerable research
activity� and there is a continuing 
ow of ideas between the �elds of neurobiology and of arti�cial
neural networks� Another historical springboard for neural network concepts was that of adaptive
control� and again this remains a subject of great interest�
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De�ning terms

Classi�cation A learning problem in which the goal is to assign input vectors to one of a number
of �usually mutually exclusive� classes�

Boltzmann machine An undirected network of discrete valued random variables� where an en�
ergy function is associated with each of the links� and for which a probability distribution is
de�ned by the Boltzmann distribution�

Cost function A function of the adaptive parameters of a model whose minimum is used to de�ne
suitable values for those parameters� It may consist of a likelihood function and additional
terms�

Decision tree A network that performs a sequence of classi�catory decisions on an input vector
and produces an output vector that is conditional on the outcome of the decision sequence�

Density estimation The problem of modeling a probability distribution from a �nite set of ex�
amples drawn from that distribution�

Discriminant function A function of the input vector which can be used to assign inputs to
classes in a classi�cation problem�

Hidden Markov model A graphical probabilistic model characterized by a state vector� an out�
put vector� a state transition matrix� an emission matrix and an initial state distribution�

Likelihood function The probability of observing a particular data set under the assumption of
a given parametrized model� expressed as a function of the adaptive parameters of the model�

Mixture model A probability model which consists of a linear combination of simpler component
probability models�

Multilayer perceptron The most common form of neural network model� consisting of successive
linear transformations followed by processing with nonlinear activation functions�

Over�tting The problem in which a model which is too complex captures too much of the noise
in the data� leading to poor generalization�

Radial basis function network A common network model consisting of a linear combination of
basis functions each of which is a function of the di�erence between the input vector and a
center vector�

Regression A learning problem in which the goal is to map each input vector to a real�valued
output vector�

Regularization A technique for controlling model complexity and improving generalization by
the addition of a penalty term to the cost function�

�	



VC dimension A measure of the complexity of a model� Knowledge of the VC dimension per�

mits an estimate to be made of the di�erence between performance on the training set and

performance on a test set�

��
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MT objectives: Erroneous conceptions

• MT is a waste of time because a machine never will translate
Shakespeare.

• Generally, the quality of translation you can get from an MT
system is very low.

• MT threatens the jobs of translators

• There is an MT system that translates what you say into
Japanese and translates the other speaker’s replies in English.

• There is an amazing South American Indian language with a
structure of such logical perfection that it solves the problem of
design MT systems.

• MT systems are machines, and buying an MT system should
be very much like buying a car.
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MT objectives: Facts

• MT is useful.

• There are many situations that MT systems produce
reliable, if less than perfect, translations at high speed.

• In some circunstances, MT systems can produce good
quality outputs.

• MT does not threaten transaltors’ jobs: High demand of
translations and too repetitive translation jobs.

• Speech-to-speech MT is still a research topic.

• There are many open research problems in MT.

• Building a traditional MT system is a time consuming job.

• A user will typically have to invest a considerable amount
of effort in customizing an MT system.
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Need of pre/post-editing

• While the number of errors and bad constructions is high, “post-
editing” can make the result useful.

• Many problems could have been avoided by making the source
text “simpler”.

• Simplification of the translation problem by using adequate rules
to produce “controled” (i.e., simple and regular) source text.
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General scheme for MT

TRANSLATOR

PRE-EDITING

POST-EDITING

source

target
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Approaches to MT: Analysis detail

SOURCE TARGET

D
ep

th
 o

f a
na

ly
si

s
INTERLINGUA 

TRANSFER 

DIRECT 

G
eneration

E. Vidal – ITI-UPV-DSIC January 2005 Page 1a.8

Pattern Recognition Machine Translation Introduction to Machine Translation

Approaches to MT: Technologies

• (Linguistic) knowledge-based methods

• (Memorized) example-based methods

– Translation memories

• Statistical models

– Alignment models
– Finite-State models

• Hybrid models
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Linguistic resources

• Dictionaries

• Grammars

• Corpora

• Paragraph-aligned and
Labeled Corpora
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Assessment

• Test sentences

• Subjective evaluation based on the number
of words that need to be corrected or deleted

• Test sentences with reference translation

• Automatic assessment

– Editing Distances:
Translation Word Error Rate (TWER)

– Multireference TWER
– N-Gram based: BLUE
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Limited domains or “sublanguages”

• Tasks with small or medium-sized vocabularies and
restricted semantic scope.

• Robust systems needed.

• Manual “post-editing” should be avoided or minimized.

• Only low development costs can be afforded.
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Limited domain or “sublanguages”: Example

The “Traveler Task” [Vidal et al., 96] (EuTrans ESPRIT project – first-phase)

• Domain: human-to-human communication
situations in the front-desk of a hotel.

• Three language pairs:

– Spanish-English,
– Spanish-German
– Spanish-Italian

Features of the Spanish-English task (similar for the other language pairs)

Input/output vocabulary sizes ∼ 700 / 500
Average input/output sentence lengths ∼ 10 / 10
Input/output test-set perplexities ∼ 11 / 6
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Limited domain or “sublanguages”: Example

The Traveler Task: examples of Spanish-English paired sentences

Spanish: Reservé una habitación individual y tranquila
con televisión hasta pasado mañana.

English: I booked a quiet, single room
with a tv. until the day after tomorrow.

Spanish: Por favor, prepárenos nuestra cuenta de la
habitación dos veintidós.

English: Could you prepare our bill for
room number two two two for us, please?
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Language translation and language understanding

• Under the Limited-Domain (LD) framework both Language Understanding (LU)
and Language Translation (LT) can be properly formulated in a uniform way.

• The ultimate goal of a LD LU system is to drive the actions associated to the
meaning conveyed by the sentences issued by the users.

• Since actions are to be performed by machines, the understanding problem
can then be simply formulated as translating the natural language sentences
into formal sentences of an adequate (computer) command language in which
the actions to be carried out can be specified.

• Thus, LU can be seen as a specific (simpler) case of LT in which the output
language is formal rather than natural.
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Approaches to speech-to-speech translation

• Traditional → Serially couple the following (existing) devices:

1. Conventional continuous word recognition front-end.
2. Text-to-text, general-purpose, knowledge-based MT system (adapted by

experts to the task in hand).
3. Text-to-speech output language synthesizer.

• Integrated approach → Consider language translation as a global input-
output decoding problem:

1. Develop an INTEGRATED DEVICE that directly accepts speech (or text)
input sentences and outputs corresponding sentences in the target
language.

2. Implement input-output decoding as a global optimization search that
takes into account all the information compiled into the integrated
recognition/translation device.

3. Chose a translation model that is trainable from input-output translation
examples.
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Speech translation:
Advantages of integration and automatic learning

• Tight integration leads to speech-input translation systems
which are significantly more robust, as compared with other
based on the more traditional, loosely coupled approach.

• Trainability leads to better adaptation to specific domains at
much lower development costs.
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Computer Assited Translation (CAT)

• Do not attempt fully automated MT

• Aim at high-quality results

• Let the human translator fully command the process

• Allow for tight human-machine cooperation

• Aim to increase human translator productivity

• Ergonomic issues and multimodality :
keyboard, mouse, speech, ...
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Typical Computer Assited Translation Scenario

Text prediction based on both the source-language text to be
translated and preceeding text that has been validated by the user.

For each source sentence or paragraph to be translated:

1. The system provides its best (or N-best) translation suggestion

2. The user selects a correct part (typically a prefix) of this
suggestion and starts amending the remaining part or entering
new text by him/herself

3. After each user-entered word (or key-stroke), the system
recomputes its best suggestion(s), thereby starting a new
human-system interaction cycle.
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Brief history of MT

• 1949 Weaver: Information-theory based approach

• 1957 Chomsky: Natural language is not governed by statistics

• 1960 ALPAC (Automatic Language Processing Advisory
Committee) report: No useful MT results are foreseen

• 1960-nowadays

– SYSTRAN system: based on dictionaries
– Several (linguistic) knowledge-based approaches

• 1985-95 “Empiricists” methods are introduced: corpus-based
and statistical approaches (IBM, 1989)

• 1995-nowadays “Empiricists” methods are thriving. Speech-
to-speech MT in limited domains
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Recent history of MT: “Empiricists” methods

• 1989-95 Statistical approach to MT by IBM Yorktown Heights researchers

– Corpus: Hansards

– Parallel English/French transcriptions of parliamentary discussions

– DARPA competitive assessment (1994): Results comparable to those
achieved by traditional approaches

• 1990-05 Development of statistical techniques and other empiricists methods

– Progress of the statistical approach (by IBM and other groups)

– Other “example-based”, empiricist techniques: Memory-Based, Finite-
State, etc.

– Statistics are applied to other MT-related fields: Lexicography, syntactic
labeling of corpora, etc.

– Progress in Grammars and Syntactic Analysis

– Computer Assisted Translation
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Notation and Basic Concepts

• x and y will generally denote source and target texts,
respectively

• CONDITIONAL AND UNCONDITIONAL PROBABILITIES:
Pr(X = x | Y = y) ≡ Pr(x | y), Pr(X = x) ≡ Pr(x)

• BAYES’ RULE: Pr(x | y) · Pr(y) = Pr(y | x) · Pr(x)

• JOINT PROBABILITY: Pr(x, y) = Pr(x) · Pr(y | x)

• Pr(x) =
∑

y

Pr(x, y)

• max
x

Pr(x) = Pr(argmax
x

Pr(x))

•
∑

x

Pr(x) ≈ max
x

Pr(x)
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General Framework

• Every sentence y in a target language is considered as a possible translation
of any other sentence x in another source language.

• For each possible pair of sentences y, x, there is a probability Pr(y | x).

• Pr(y | x) should be low for pairs (y, x) such as:

( una habitación con vistas al mar , are all expenses included in the bill ? )

• Pr(y | x) should be high for pairs such as:

( ¿ hay alguna habitación tranquila libre ? , is there a quiet room available ? )
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A direct approach

Search for a target sentence with maximum posterior probability:

ŷ = argmax
y

Pr(y | x)

A “direct model”

x
- Pr(y | x)

y
-

Need: alignment and lexicon models
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An inverse approach

Decompose Pr(y | x) using Bayes’ rule:

ŷ = argmax
y

Pr(y | x) = argmax
y

Pr(x | y) · Pr(y)

A “distorted channel model”

Pr(y)
y

- Pr(x | y)
x

-

Need: a target-language model + alignment and lexicon models
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A finite-state approach

The direct probability can be decomposed in a different way:

ŷ = argmax
y

Pr(y | x) = argmax
y

Pr(x, y)

A “joint” model

Pr(x, y)

y
-

x
-

A stochastic finite-state transducer can model the joint distribution
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Translation search

Models

?

x
- Decoder

ŷ
-

• Direct approach: alignment and lexicon models

ŷ = argmax
y

Pr(y | x)

• Inverse approach: a target-language model + alignment and lexicon models

ŷ = argmax
y

Pr(x | y) · Pr(y)

• Joint approach: stochastic finite-state transducer

ŷ = argmax
y

Pr(x, y)
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Speech-input translation

Given an input acoustic sequence v, search for a
target sentence with maximum posterior probability:

ŷ = argmax
y

Pr(y | v)

But this can be seen as a “two-step process” :

v −→ x −→ y

where the “hidden variable” x accounts for all possible input decodings of v:

ŷ = argmax
y

∑
x

Pr(y, x | v) = argmax
y

∑
x

Pr(x, y) · Pr(v | x)

(with the assumption: Pr(v | x, y) does not depend on the target sentence y)
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Speech-input translation

argmax
y

Pr(y | v) ≈ argmax
y

max
x

(Pr(x, y) · Pr(v | x))

= argmax
y

max
x

(Pr(y) · Pr(x | y) · Pr(v | x))

= argmax
y

max
x

(Pr(x) · Pr(y | x) · Pr(v | x))

• Pr(v | x) ≈ ACOUSTIC MODELS

• Pr(x, y) ≈ FINITE-STATE TRANSDUCERS

• Pr(x | y),Pr(y | x) ≈ ALIGNMENT AND LEXICON MODELS

• Pr(y) ≈ TARGET LANGUAGE MODELS

• Pr(x) ≈ SOURCE LANGUAGE MODELS
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Text prediction for Computer-Assisted Translation (CAT)

Given a source text x and a “correct” prefix yp of the target text, search for
a suffix ŷs, that maximizes the posterior probability over all possible sufixes:

ŷs = argmax
ys

Pr(ys | x, yp)

Taking into account that Pr(yp|x) does not depend on ys, we can write:

ŷs = argmax
ys

Pr(ypys | x)

= argmax
ys

Pr(x, ypys)

= argmax
ys

Pr(x | ypys) · Pr(ypys)

Main difference with text-input machine translation: search over the set of suffixes.
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Target language dictation in CAT

A human translator dictates the translation of a source text, x,
producing a target language acoustic sequence v.

Given v and x, the system should search for a most likely decoding of v:

ŷ = argmax
y

Pr(y | x, v)

By the assumption that Pr(v | x, y) does not depend on x,

ŷ = argmax
y

Pr(v | y) · Pr(x | y) · Pr(y)

• Pr(v | y) ≈ (TARGET LANGUAGE) ACOUSTIC MODELS

• Pr(x | y) ≈ TRANSLATION MODEL

• Pr(y) ≈ TARGET LANGUAGE MODEL

Similar to plain speech decoding, where: ŷ = argmaxy Pr(v | y) · Pr(y)
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Further use of speech recognition in CAT

Let x be the source text and yp a “correct” prefix of the target sentence.

As in pure text CAT the system suggests an optimal suffix:

ŷs = argmax
ys

Pr(ys | x, yp) . (1)

The user is now allowed to utter some words, v, generally aimed at
amending parts of ŷs and the system has then to obtain a most probable
decoding of v:

d̂ = argmax
d

Pr(d | x, yp, ŷs, v) . (2)

Finally, the user can enter additional amendment keystrokes k, to
produce a new consolidated prefix, yp, based on the previous yp, d̂, k
and parts of ŷs.
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Further use of speech recognition in CAT (cont.)

From Eq. (2):

d̂ = argmax
d

Pr(d | x, yp, ŷs) · Pr(v | x, yp, ŷs, d)

and, by making the assumption that Pr(v | x, yp, ŷs, d) only depends on d:

d̂ = argmax
d

Pr(d | x, yp, ŷs) · Pr(v | d)

• Pr(v | d) ≈ (TARGET LANGUAGE) ACOUSTIC MODELS

• Pr(d | x, yp, ŷs) ≈ TARGET LANGUAGE MODEL CONSTRAINED BY THE

SOURCE SENTENCE, THE PREFIX AND THE SUFFIX
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

General framework

• Every sentence y in one language is a translation of any sentence x in another
language.

• For each possible pair of sentences, y and x, there is a probability Pr(y | x).

• The probability of pairs of sentences as
quiero una habitación doble con vistas al mar # are all expenses included in the bill ?
should be low.

• The probability of pairs of sentences as
¿ hay alguna habitación tranquila libre ? # is there a quiet room available ?
should be high.
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

General framework

Given a source sentence x, search for the sentence ŷ

ŷ = argmax
y

Pr(y | x)

Approaches

• A direct approach: maximum entropy models

• An inverse approach: channel models

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 2: 4

Pattern Recognition approaches to Machine Translation Statistical Alignment Models

An inverse approach

Given a source sentence x, search for the sentence ŷ

ŷ = argmax
y

Pr(y | x) = argmax
y

Pr(x | y) · Pr(y)

A channel model

Pr(y)
y

- Pr(x | y)
x

-

A target-language model + alignment and lexicon models
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Translation search

x
- Decoder

ŷ
-

6

Models

6

Training data

• Inverse approach:

– A target-language model: Pr(y) ≈ Pr(y)
– Translation models (alignment and lexicon models): Pr(x | y) ≈ Pr(x | y)
– Search procedure: ŷ = argmax

y
Pr(x | y) · Pr(y)
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

An inverse approach

x
- PRE-PROCESSING -

SEARCH
argmax

y
Pr(x | y) · Pr(y) - POST-PROCESSING

ŷ
-

6 6

Pr(x | y) Pr(y)

�
�

��

@
@

@I

TRANSLATION
MODELS

TARGET
LANGUAGE

MODEL
6 6

BILINGUAL
TRAINING

DATA

TARGET
TRAINING

DATA
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

An inverse approach: The target language model

x
-

SEARCH

argmax
y

Pr(x | y) · Pr(y)

ŷ
-

6 6

Pr(x | y) Pr(y)

�
�

��

@
@

@I

TRANSLATION
MODELS

TARGET
LANGUAGE

MODEL
6 6

BILINGUAL
TRAINING

DATA

TARGET
TRAINING

DATA
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Language models

Word n-grams

Pr(y) =
|y|∏
i=1

Pr(yi|y1 . . . yi−1) ≈ Pr(y) =
|y|∏
i=1

pn(yi|yi−n+1 . . . yi−1)

n-grams of categories

Pr(y) ≈ Pr(y) =
|y|∏
i=1

pn(Ci|Ci−N+1 . . . Ci−1) · p(yi|Ci)

Regular or context-free grammars

Pr(y) ≈ Pr(y) =
∑
d(y)

pG(d(y)) ≈ max
d(y)

pG(d(y))
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Learning language models

• Probabilistic estimation techniques.

• Grammatical inference techniques.

• SMOOTHING.

• Extensions: cache, triggers, categories, etc.

• Widely used toolkits for n-grams:

– SRILM - The SRI Language Modeling Toolkit
http://www.speech.sri.com/projects/srilm/

– The CMU Statistical Language Modeling (SLM) Toolkit
http://www.speech.cs.cmu.edu/SLM info.html
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An inverse approach

x
-

SEARCH
argmax

y
Pr(x|y) · Pr(y)

ŷ
-

6 6

Pr(x | y) Pr(y)

�
�

��
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Example of word alignments

. . . . . . . . . . . . . ■
Cabedo . . . . . . . . . . . ■ .
Rosario . . . . . . . . . . ■ . .

de . . . . . . . . . ■ . . .
nombre . . . . . . . . . ■ . . .

a . . . . . . . . . ■ . . .
tranquila . . . . . . . ■ . . . . .

habitación . . . . . . . . ■ . . . .
una . . . . . . ■ . . . . . .
de . . . . . ■ . . . . . . .

reserva . . . . ■ . . . . . . . .
la . . . ■ . . . . . . . . .

hecho . . ■ . . . . . . . . . .
he . ■ . . . . . . . . . . .

I have
m

ade
a reservation
for
a quiet
room
for
R

osario
C

abedo
.
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Example of word alignments

taxi . . . . . ■ . . .
un . . . . ■ . . . .

pı́dame ■ ■ ■ ■ . . . . .
, . . . . . . ■ . .

favor . . . . . . . ■ .
por . . . . . . . ■ .

could
you
ask
for
a taxi
, please
?
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Example of word alignments
H. Ney, Statistical Natural Language Processing, 2003: Canadian Hansards

? . . . . . . . . . . . . . . . . . . . . ■

proposal . . . . . ■ . . . . . . . . . . . . . . .
new . . . . ■ . . . . . . . . . . . . . . . .
the . . . ■ . . . . . . . . . . . . . . . . .

under ■ ■ ■ . . . . . . . . . . . . . . . . . .
fees . . . . . . . . . . . . . . . . . ■ ■ ■ .

collecting . . . . . . . . . . . . . . . ■ ■ . . . .
and . . . . . . . . . . . . . . ■ . . . . . .

administering . . . . . . . . . . . . . ■ . . . . . . .
of . . . . . . . . . . . . ■ . . . . . . . .

cost . . . . . . . . . . ■ . . . . . . . . . .
anticipated . . . . . . . . . . . ■ . . . . . . . . .

the . . . . . . . . . ■ . . . . . . . . . . .
is . . . . . . . . ■ . . . . . . . . . . . .

What . . . . . . ■ ■ . . . . . . . . . . . . .

E
n

vertu
de les
nouvelles
propositions
, quel
est
le cout
prevu
de adm

inistration
et de perception
de les
droits
?
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Example of word alignments

AMETRA corpus

1996 . . ■ . .
de . . ■ . .

marzo . . . ■ .
de . . . ■ .
20 . . . . ■
a . . . . ■
, . ■ . . .

Lemoa ■ . . . .
En ■ . . . .

Lem
oan

, 1996ko
m

artxoaren
20an
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Example of word alignments

METEO corpus

sud . . . . . . . ■
meitat . . . . . . ■ .
seva . . . . . ■ . .

la . . . . . . . .
en . . . . ■ . . .

Llevant . . . ■ . . . .
de . . ■. . . . . .
des . . ■ . . . . .

sobretot ■ ■ . . . . . .

sobre
todo

desde

Levante
en su m

itad
sur
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Alignments

• Alignments: (Brown et al. 90) J = |x| y I = |y|

a ⊆ {1, ..., J} × {1, ..., I}

– Number of connections: I ·J

– Number of alignments: 2I·J

• Constrain: a : {1, ..., J} → {0, ..., I}, (aj = 0 ⇒ j in x is not aligned with any position in y).

– Number of alignments: (I + 1)J

• Set of possible alignments: A(x, y)

• The probability of translation y to x through an alignment a is Pr(x, a | y)

Pr(x | y) =
∑

a∈A(y,x)

Pr(x, a | y)
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Alignments

Pr(x, a | y) = Pr(J | y) · Pr(x, a | J, y)

= Pr(J | y) · Pr(a | J, y) · Pr(x | a, J, y)

• Length probability: Pr(J | y)

• Alignment probability : Pr(a | J, y)

• Lexicon probability : Pr(x | a, J, y)

Pr(a | J, y) =
J∏

j=1

Pr(aj | aj−1
1 , J, y) Pr(x | a, J, y) =

J∏
j=1

Pr(xj | xj−1
1 , a, J, y)

Pr(x, a | y) = Pr(J | y) ·
J∏

j=1

Pr(aj | aj−1
1 , xj−1

1 , J, y) · Pr(xj | aj
1, xj−1

1 , J, y)
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

An inverse approach

x
-

SEARCH
argmax

y
Pr(x|y) · Pr(y)

ŷ
-

6 6

Pr(x | y) Pr(y)

�
�
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Zero-order models

• Model 1

• Model 2

• The Viterbi approximation

• The search problem
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Model 1

Pr(x, a | y) = Pr(J | y) ·
J∏

j=1

Pr(aj | aj−1
1 , xj−1

1 , J, y) · Pr(xj | aj
1, xj−1

1 , J, y)

• Pr(J | y) ≈ n(J |I)

• Pr(aj | aj−1
1 , xj−1

1 , J, y) ≈ 1
(I+1)J

• Pr(xj | aj
1, xj−1

1 , J, y) ≈ l(xj | yaj
)

l(xj | yi) defines a statistical lexicon

Pr(x | y) ≈ PM1(x | y) =
n(J |I)

(I + 1)J

J∏
j=1

I∑
i=0

l(xj | yi)
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Model 1

Pr(x | y) =
∑

a
Pr(J | y) · Pr(x, a | J, y)

≈
∑

a
n(J |I) ·

J∏
j=1

[
1

(I + 1)J
· l(xj | yaj

)
]

=
n(J |I)

(I + 1)J

I∑
a1=0

· · ·
I∑

aJ=0

J∏
j=1

l(xj | yaj
)

=
n(J |I)

(I + 1)J

J∏
j=1

I∑
aj=0

l(xj | yaj
)

=
n(J |I)

(I + 1)J

J∏
j=1

I∑
i=0

l(xj | yi) = PM1(x | y)
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Model 1

• Pr(J | y) ≈ n(J |I)

• Pr(aj | aj−1
1 , xj−1

1 , J, y) ≈ 1
(I+1)J

• Pr(xj | aj
1, xj−1

1 , J, y) ≈ l(xj | yaj
)

Generative process: Given a target sentence y of length I,

1. Choose the length of the source sentence J according to n(J |I)

2. For each 1 ≤ j ≤ J , choose a position aj in the target sentence
according to an uniform distribution.

3. For each 1 ≤ j ≤ J choose a source word xj according to l(xj | yaj
)
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

An example

Given y: a double room (I = 3)

Choose J (n(J | 3)): (J = 5) 1 2 3 4 5

Choose aj (uniform)
1 3 2 2 2
a room double double double

Choose xj (l(xj | yi)) Una habitación con dos camas
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Parameter estimation with Model 1

• Training sample: A = {(x(1), y(1)), (x(2), y(2)), · · · , (x(K), y(K))}

• Function to be maximized: likelihood

LA(l) =
K∏

k=1

PM1(x(k) | y(k)) =
K∏

k=1

n(J (k)|I(k))
(I(k) + 1)J(k)

·
J(k)∏
j=1

I(k)∑
i=0

l(x(k)
j | y(k)

i )

or the log-likelihood

LA(l) =
K∑

k=1

J(k)∑
j=1

log
I(k)∑
i=0

l(x(k)
j | y(k)

i )

• Procedure: Expectation-maximization or growth transformations (T1 : θ → θ):

T1(l(x | y)) =
l(x | y) ·

(
∂LA(l)
∂l(x|y)

)
∑

x′ l(x′ | y) ·
(

∂LA(l)
∂l(x′|y)

)
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Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Parameter estimation with Model 1

l(x | y)
∂LA(l)

∂l(x|y)
= l(x|y)

KX
k=1

KY
k′ = 1

k′ 6= k

PM1(x(k′)|y(k′)
)
∂PM1(x(k)|y(k))

∂l(x|y)
= LA(l)

KX
k=1

l(x|y) · ∂PM1(x(k)|y(k))

∂l(x|y)

PM1(x(k)|y(k))

l(x | y) ·
∂PM1(x(k) | y(k))

∂l(x | y)
= l(x | y) ·

n(J (k)|I(k))

(I(k) + 1)J(k)
·

∂

∂l(x | y)

J(k)Y
j=1

I(k)X
i=0

l(x(k)
j | y(k)

i )

= l(x | y) ·
n(J (k)|I(k))

(I(k) + 1)J(k)
·

J(k)X
j=1

0B@ J(k)Y
j′=1;j′6=j

I(k)X
i=0

l(x(k)

j′ | y(k)
i )

1CA ·
∂

∂l(x | y)

I(k)X
i=0

l(x(k)
j | y(k)

i )

= l(x | y) · PM1(x(k) | y(k)
) ·

J(k)X
j=1

0B@ 1PI(k)

i=0 l(x(k)
j | y(k)

i )
·

I(k)X
i=0

δ(x(k)
j , x) · δ(y(k)

i , y)

1CA
= l(x | y) · PM1(x(k) | y(k)

) ·
J(k)X
j=1

0@ δ(x(k)
j , x)PI(k)

i=0 l(x(k)
j | y(k)

i )

1A ·#(y, y(k)
)

= PM1(x(k) | y(k)
) · l(x | y) ·

#(x, x(k)) ·#(y, y(k))PI(k)

i=0 l(x | y(k)
i )
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Parameter estimation in Model 1

Iterative E-M procedure:

Expectation step:

c(x | y; x(k), y(k)) =
l(x | y)∑I(k)

i=0 l(x | y(k)
i )

·#(y, y(k)) ·#(x, x(k))

Maximization step:

T1(l(x | y)) =
∑K

k=1 c(x | y; x(k), y(k))∑
x′

∑K
k=1 c(x′ | y; x(k), y(k))

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 2: 29



Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Parameter estimation in Model 1

• PROPERTY: the increase of the likelihood of the training set in each iteration:

K∏
k=1

PM1(x(k) | y(k)) ≤
K∏

k=1

PT1(M1)(x(k) | y(k))

• PROPERTY: Eventually an absolute maximum is achieved!

• COMPUTATIONAL COST OF T1: If IM = maxk I(k) y JM = maxk J (k)

– time: O(K × (IM + JM))
– space: O(|Σ| × |∆|)
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Model 2

Pr(x, a | y) = Pr(J | y) ·
J∏

j=1

Pr(aj | aj−1
1 , xj−1

1 , J, y) · Pr(xj | aj
1, xj−1

1 , J, y)

• Pr(J | y) ≈ n(J |I)

• Pr(aj | aj−1
1 , xj−1

1 , J, y) ≈ a(aj | j, J, I)

• Pr(xj | aj
1, xj−1

1 , J, y) ≈ l(xj | yaj
)

l(xj | yi) defines a statistical lexicon

a(i | j, J, I) defines statistical alignments

Pr(x | y) ≈ PM2(x | y) = n(J |I) ·
J∏

j=1

I∑
i=0

a(i | j, J, I) · l(xj | yi)
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Model 2

Pr(x | y) =
∑

a
Pr(J | y) · Pr(x, a | J, y)

=
∑

a
n(J | I) ·

J∏
j=1

[
a(aj | j, J, I) · l(xj | yaj

)
]

= n(J | I) ·
I∑

a1=0

· · ·
I∑

aJ=0

J∏
j=1

[
a(aj | j, J, I) · l(xj | yaj

)
]

= n(J | I) ·
J∏

j=1

I∑
aj=0

a(aj | j, J, I) · l(xj | yaj
)

= n(J | I) ·
J∏

j=1

I∑
i=0

a(i | j, J, I) · l(xj | yi) = PM2(x | y)
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Model 2

• Pr(J | y) ≈ n(J |I)

• Pr(aj | aj−1
1 , xj−1

1 , J, y) ≈ a(aj | j, J, I)

• Pr(xj | aj
1, xj−1

1 , J, y) ≈ l(xj | yaj
)

Generative process: Given a target sentence y of length I,

1. Choose the length of the source sentence J according to n(J |I).

2. For each 1 ≤ j ≤ J , choose a position aj in the target sentence
according to a(aj | j, J, I).

3. For each 1 ≤ j ≤ J choose a source word xj according to l(xj | yaj
).
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An example

Given y: a double room (I = 3)

Choose J (n(J | 3)): (J = 5) 1 2 3 4 5

Choose aj (a(aj |, j, I, J)) 1 3 2 2 2
a room double double double

Choose xj (l(xj | yi)) Una habitación con dos camas
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Parameter estimation in Model 2

• Training sample: A = {(x(1), y(1)), (x(2), y(2)), · · · , (x(K), y(K))}

• Function to be maximized: likelihood

LA(a, l) =
K∏

k=1

PM2(x(k) | y(k))

=
K∏

k=1

n(J (k) | I(k)) ·
J(k)∏
j=1

I(k)∑
i=0

a(i | j, J (k), I(k)) · l(x(k)
j | y(k)

i )

or the log-likelihood:

LA(a, l) =
K∑

k=1

J(k)∑
j=1

log
I(k)∑
i=0

a(i | j, J (k), I(k)) · l(x(k)
j | y(k)

i )

• Procedure: Expectation-maximization or growth transformations (T2 : θ → θ)
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Parameter estimation in Model 2
Iterative E-M procedure:

Expectation step:

c(x | y; x(k), y(k)) =
J(k)∑
j=1

I(k)∑
i=0

l(x | y) · a(i | j, J (k), I(k)) · δ(x, x(k)
j ) · δ(y, y(k)

i )∑I(k)

n=0 l(x | yn) · a(n | j, J (k), I(k))

c(i | j;J, I, x(k), y(k)) =


l(x(k)

j | y(k)
i ) · a(i | j, J (k), I(k))∑I(k)

i′=0 l(x(k)
j | y(k)

i′ ) · a(i′ | j, J (k), I(k))
if I = I(k)

and J = J (k)

0 otherwise

Maximization step:

T2(l(x | y)) =
∑K

k=1 c(x | y; x(k), y(k))∑
x′

∑K
k=1 c(x′ | y; x(k), y(k))

T2(a(i | j, J, I)) =
∑K

k=1 c(i | j;J, I, x(k), y(k))∑
i′

∑K
k=1 c(i′ | j;J, I, x(k), y(k))
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Parameter estimation in Model 2

• PROPERTY: the increase of the likelihood of the training set in each iteration.

K∏
k=1

PM2(x(k) | y(k)) ≤
K∏

k=1

PT2(M2)(x(k) | y(k))

• PROPERTY: Eventually an local maximum is achieved.

• COMPUTATIONAL COST OF T2: If IM = maxk I(k) y JM = maxk J (k)

– time: O(K × IM × JM)
– space: O((|Σ| × |∆|) + IM + JM)
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Optimal alignment with Model 2

PM2(x | y) = n(J |I) ·
J∏

j=1

I∑
i=0

a(i | j, J, I) · l(xj | yi) ≈

P̂M2(x | y) = n(J | I) ·
J∏

j=1

max
0≤i≤I

a(i | j, I, J) · l(xj | yi)

Algorithm Viterbi (x, y, l, a)
Input: A pair x, y and the parameters l and a of Model 2
Output : An optimal alignment A between x and y.

For j := 1 until J

A[j] := argmax
0≤i≤I

a(i | j, J, I)·l(xj | yi)

End-for
Return : A

The computational cost of this algorithm is O(J × I).
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Examples of alignments

EUTRANS-I corpus: Spanish-English

• Vocabulary: 680 Spanish words, and 513 English words.

• Training: 10,000 pairs (97,000/99,000 words).

An example

1 2 3 4 5 6 7 8 9 10
por favor , ¿ podrı́a ver alguna habitación tranquila ?

• MODEL 1, ITERATION 5
could (5) I (6) see (6) a (7) quiet (9) room (8) , (3) please (2) ? (4)

• MODEL 2, ITERATION 2
could (5) I (6) see (6) a (7) quiet (9) room (8) , (3) please (3) ? (10)
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Examples of alignments
MODEL 2 ITERATION 2

por favor , he hecho una reserva a nombre de Federico Redondo .
I (4) have (4) made (5) a (6) reservation (5) for (9) Federico (11) Redondo (12) . (0)

por favor , ¿ podrı́a pedir nuestro taxi ?
could (5) you (4) ask (6) for (6) our (7) taxi (8) , (3) please (3) ? (9)

¿ les importarı́a despertarnos mañana a las siete y cuarto , por favor ?
would (2) you (1) mind (3) waking (4) us (4) up (6) tomorrow (5) at (7) a (9) quarter
(10) past (9) seven (8) , (13) please (13) ? (1)

me voy a ir el jueves tres de junio a la una y media de la tarde .
I (2) am (2) leaving (2) on (5) Thursday (6) June (9) the (5) third (9) at (10) half (14)
past (13) one (11) in (4) the (11) afternoon (17) . (18)
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Viterbi estimation

• Training sample: A = {(x(1), y(1)), (x(2), y(2)), · · · , (x(K), y(K))}
• Function to be maximized: Viterbi score

• Procedure:

VITERBI(x(k), y(k), l, a) ∀k : 1 ≤ k ≤ K

ĉ(x | y; x(k)
, y(k)

) = #(x, x(k)
)×#(y, y(k)

)

ĉ(i | j; J, I, x(k)
, y(k)

) =

8><>:
1 if i = aj in VITERBI(x(k), y(k), l, a) and if

J (k) = J and I(k) = I

0 otherwise

Tv(l(x | y)) =

PK
k=1 ĉ(x | y; x(k), y(k))P

x′
PK

k=1 ĉ(x′ | y; x(k), y(k))

Tv(a(i | j, J, I)) =

PK
k=1 ĉ(i | j; J, I, x(k), y(k))P

i′
PK

k=1 ĉ(i′ | j; J, I, x(k), y(k))
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Viterbi estimation

• PROPERTY: the increasing of the Viterbi score in each iteration:

K∏
k=1

P̂M2(x(k) | y(k)) ≤
K∏

k=1

P̂Tv(M2)x
(k) | y(k))

• PROPERTY: Eventually a local maximum is achieved.

• COMPUTATIONAL COST OF Tv: If IM = maxk I(k) y JM = maxk J (k)

– time: O(K × IM × JM)
– space: O((|Σ| × |∆|) + IM × JM)
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Simplified version of Model 2 (Ney et al. 2000)

Pr(x, a | y) = Pr(J | y) ·
J∏

j=1

Pr(aj | aj−1
1 , xj−1

1 , J, y) · Pr(xj | aj
1, xj−1

1 , J, y)

• Pr(J | y) ≈ n(J |I)

• Pr(aj | aj−1
1 , xj−1

1 , J, y) ≈ a(aj | j, I)

• Pr(xj | aj
1, xj−1

1 , J, y) ≈ l(xj | yaj
)

Pr(x | y) ≈ PA(x | y) = n(J | I) ·
J∏

j=1

I∑
i=1

a(i | j, I) · l(xj | yi)

TA(t(x | y)) =

PK
k=1 c(x | y; x(k), y(k))P

x′
PK

k=1 c(x′ | y; x(k), y(k))
and TA(a(i | j, J)) =

r(i − j I
J )PI

i′=1 r(i′ − j I
J )

It is assumed that the diagonal of the plain (j,i) is the dominant factor.
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The translation process: searching

argmax
y

Pr(x | y) · Pr(y)

A computational difficult problem
( K.Knight Decoding complexity in word-replacement translation models. Comp. Ling. 1999 )

ALGORITHMIC SOLUTIONS:

• Dynamic Programming like (Garcia-Varea, 1998) (Ney, 2000)

• Stack-Decoding, A? or Branch & Bound(Brown, 1990)(Wang, 1997)

• Greedy (Germann, 2001)

• Using finite-state transducers (Kumar, 2004)
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Dynamic-programming like search

An approximate solution: DPSearchM2

• Characteristics:

– Building partial hypothesis (1, 2, · · · , I)
– Search graph: a |E| × I trellis.

• Assumptions:

– Language model: n-grams (bigrams)
– The length of target sentence is known: I.
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Dynamic-programming like search: DPSearchM2
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Dynamic-programming like search: DPSearchM2

• Search criterium:

max
y

{ I∏
i=1

p2(yi|yi−1) ·
J∏

j=1

I∑
i=0

l(xj|yi) · a(i|j, J, I)
}

• Auxiliar variables:

– Q(e, i, j): Contribution of the translation models for each j:

Q(t, i, j) = l(xj|t) · a(i|j, J, I) +
i−1∑
k=0

l(xj|yk) · a(k|j, J, I)

– T (t, i): Contribution of the language model:

T (t, i) = p2(t|yi−1)
i−1∏
k=1

p(yk|yk−1)
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Dynamic-programming like search: DPSearchM2

• Recursion: Q(t, i, j) = Q(t̂, i− 1, j) + l(xj|t̂) · a(i|j, J, I)

T (t, i) = T (t̂, i− 1) · p2(t|t̂)

where t̂ is the optimal state in i− 1

t̂ = argmax
t′

T (t′, i− 1) · p2(t | t′) ·
J∏

j=1

(Q(t′, i− 1, j) + l(xj|t) · a(i|j, J, I))

• Basis of the recursion ∀t y ∀j : 1 ≤ j ≤ J :

Q(t, 1, j) = l(xj|y0) · a(0|j, J, I)

T (t, 1) = 1.0

• An approximation to the optimal solution is:

ŷ = argmax
y

{
T (yI|I) ·

J∏
j=1

Q(yI, I, j)
}
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Dynamic-programming like search: DPSearchM2

• Problem: in i, yI
i+1 is unknown:

Q(t, i, j) = l(xj|t) · a(i|j, J, I) +
I∑

k=0;/k 6=i

l(xj|yk) · a(k|j, J, I)

• Solution: Iterative search

Q(t, i, j) = Q(t̂(t, i), i− 1, j) + l(xj|t̂(t, i)) · a(i|j, J, I) + R(j, i + 1)

R(j, i) =
I∑

k=i

l(xj|ỹk)a(k|j, J, I); ỹI
1 is the last optimal solution

– Initialization: R(j, i) = 0
– But

R(i, j) =
I∑

k=i

max
t
{l(xj|t) · a(k|j, J, I)} → Heuristic initialization
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First-order models

• Homogeneous HMM model (HMM)

• Search: Quasi-monotone alignments

• Search: Inverted alignments

• Results

• Other search solution
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Homogeneous HMM alignment
( H. Ney et al. Algorithms for statistical translation of spoken language. IEEE TSAP. 2000. )

Pr(x, a | y) = Pr(J | y) ·
J∏

j=1

Pr(aj | aj−1
1 , xj−1

1 , J, y) · Pr(xj | aj
1, xj−1

1 , J, y)

• Pr(J | y) ≈ n(J |I)

• Pr(aj | aj−1
1 , xj−1

1 , J, y) ≈ h(aj | aj−1, J, I)

• Pr(xj | aj
1, xj−1

1 , J, y) ≈ l(xj | yaj
)

h(aj | aj−1, J, I) defines statistical alignment with first-order dependencies

PHMM(x | y) = n(J | I) ·
∑

a

J∏
j=1

h(aj | aj−1, J, I) · l(xj | yaj
)
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Homogeneous HMM alignment
Forward computation of PHMM(x | y)

PHMM(x | y) = n(J | I) ·
∑

a

J∏
j=1

h(aj | aj−1, J, I) · l(xj | yaj
) = n(J | I) ·Q(I, J)

with

Q(i, j) = l(xj|yi) ·
∑

i′

h(i|i′, I, J) ·Q(i′, j − 1)

MAXIMUM APPROACH

PHMM(x | y) ≈ n(J | I) ·max
a

J∏
j=1

h(aj | aj−1, J, I) · l(xj | yaj
)

Viterbi computation in the maximum approach

Q̂(i, j) = l(xj|yi) ·max
i′

(
h(i|i′, I, J) · Q̂(i′, j − 1)

)
F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 2: 53



Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Homogeneous HMM alignment

ALIGNMENT PROBABILITY DISTRIBUTION:

h(i|i′, I, J) =
q(i− i′)∑I

i′′=1 q(i′′ − i′)

TRAINING WITH THE MAXIMUM APPROACH

• Position alignment by computing Q̂(i, j)

• Parameter estimation (relative frequencies)
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Searching with homogeneous HMM alignments

max
y

Pr(y) · Pr(x | y) ≈

max
I

n(J | I) · max
y∈∆I

 I∏
i=1

p2(yi | yi−1) ·max
a

J∏
j=1

[
h(aj | aj−1, J) · l(xj | yaj

)
]

• Quasi-monotone alignments and quasi-monotone search.

p2(yi | yi−1) ⇒ p[aj−aj−1](yaj
| yaj−1

)

• Inverted alignments and search.

h(aj | aj−1, J) · l(xj | yaj
) ⇒ q(i | bi, J, I) · t(xbi

| yi)
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Quasi-monotone alignments and quasi-monotone search

δ ≡ aj − aj−1 ∈ {0, 1, 2}

Modification of the target language model

• If δ = 0, p[δ](y | y′) =
{

1 y = y′

0 y 6= y′

• If δ = 1, p[δ](y | y′) = p2(y | y′)

• If δ = 2, p[δ](y | y′) = maxy′′ (p2(y | y′′) · p2(y′′ | y′))

max
I

n(J | I) ·max
y,a


J∏

j=1

h(aj | aj−1, J) · p[aj−aj−1](yaj
| yaj−1

) · l(xj | yaj
)
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Quasi-monotone alignments and quasi-monotone search

Source position
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Quasi-monotone alignments and quasi-monotone search

( C.Tillmann. Word re-ordering and DP based search algorithm for SMT. Ph.D. Thesis. 2001. )

max
I

n(J | I) ·max
y,a


J∏

j=1

h(aj | aj−1, J) · p[aj−aj−1](yaj
| yaj−1

) · l(xj | yaj
)




Q(i, j, s) = the probability of the best partial hypothesis (yi
1, aj

1) with yi = y and aj = i.

Q(i, j, s) = t(xj | s) ·max
δ,e′

(
h(i | i− δ, I) · p[δ](s | s′) ·Q(i− δ, j − 1, s′)

)
Solution

max
I,ŝ

(n(J | I) ·Q(I, J, ŝ))

Computational cost: O(Imax · J · | ∆ |2)
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Quasi-monotone alignments and quasi-monotone search

( H. Ney et al. Algorithms for statistical translation of spoken language. IEEE TSAP. 2000. )

• Problem with the monotone models: assumption of similar syntactic structures in both
languages.

– First solution: Re-ordering and monotone models.

– Second solution: Two-level monotone alignments:

– Third solution: a new alignment model
∗ Concept of inverted alignment : bi = j ⇒ yi ⇔ xj

∗ Associated distribution: q(i | bi, J, I)
∗ (+ optional) Fertility
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Inverted alignments
H. Ney, Statistical Natural Language Processing, STC Doctorate Program, UPC. 2003

An inverted alignment is: i → Bi ⊂ {1, . . . , j, . . . , J}

Pr(x, b | y) = Pr(J | y) · Pr(x, b | J, y)

= Pr(J | y) ·
I∏

i=1

Pr(xbi
, bi | xbi−1

b1
, bi−1

1 , J, y)

= Pr(J | y) ·
I∏

i=1

(
Pr(bi | xbi

b1
, bi−1

1 , J, y) · Pr(xbi
| xbi−1

b1
, bi−1

1 , J, y)
)

≈ n(J | I) ·
I∏

i=1

(
q(bi | bi−1

1 ; xbi
, yi−1) · l(xbi

| yi)
)

= n(J | I) ·
I∏

i=1

q(bi | bi−1
1 ; xbi

, yi−1) ·
∏
j∈bi

l(xj | yi)
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Inverted alignments and search

max
I

{
n(J | I) ·max

y,b

{
I∏

i=1

[
p2(yi | yi−1) · q(i | bi, J, I) · l(xbi

| yi)
]}}

QI(i, j, y) = probability of the best partial hypothesis (yi
1, bi

1) con yi = y y bi = j.

General recursion:

QI(i, j, y) = l(xj | y) · q(i | j, I, J) ·max
j′,y′

(p2(y | y′) ·QI(i− 1, j′, y′))

Solution:

max
I,ŷ

(n(J | I) ·QI(I, J, ŷ))

Computational cost: O(I2
max · J2 · | ∆ |2)
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Inverted alignments

( H. Ney et al. Algorithms for statistical translation of spoken language. IEEE TSAP. 2000. )

Source position
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Results

EuTrans-I corpus (Spanish-English)

• Vocabulary: 680 Spanish words, and 513 English words.

• Training: 10,000 pairs (97,000/99,000 words).

• Test: 2,996 pairs (PP=8.6/5.2) (35,000/35,590 words).

• Manual categories: 7.

Model WER
Quasi-monotone search 10.8

DP-search with M2 13.9

Word error rate (WER): The minimum number of substitution, insertion and deletion operations needed to
convert the word string hypothesized by the translation system into a given single reference word string.
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Dynamic programming approach: The traveling salesman problem
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Dynamic programming approach: The traveling salesman problem

( H. Ney, Statistical Natural Language Processing, STC Doctorate Program, UPC. 2003 )

DP Algorithm for SMT (x, l, a)
Input: A source sentence x and the parameters l and a.
Output : A target sentence y.

Initialization
For c := 1 until J do

For each (C, j) with C ⊂ {1, . . . , J}, j ∈ C and |C| = c do
For each pair of target words y, y′ do

Qyy′(C, j) = l(xj | y)· max
y′′,j′∈C−{j}

(
a(j | j′) · p(y | y′, y′′) ·Qy′y′′(C − {j}, j′)

)
End-for

End-for

Return : argmax
y,y′,j

p(# | y, y′)·Qyy′({1, . . . , J}, j) and traceback

The set C is constraint to be a maximum number of positions.
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Categorization

• Too many parameters to be estimated

• Many words play the same role: names, dates, etc.

• Substitution of words by categories:

– The vocabulary size decreases.
– Easy word addition to the vocabulary.

• Examples:

– mi nombre es $NAME.masc $SURNAME . # my name is $NAME.masc $SURNAME .

– nos vamos a ir el $DATE a $HOUR . # we are leaving on $DATE at $HOUR .

• Given a bilingual corpus:

– Automatic extraction of bilingual categories.
– Manual extraction of bilingual categories.
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Categorization and learning

• Given a bilingual corpus:

– CATEGORIZED TRANSLATOR: Training a statistical translator (a translation model
plus a target language model) from a corpus of categorized pairs.

– A TRANSLATOR FOR EACH CATEGORY: Training a statistical translator (translation
model plus target language model) from the set of pairs of segments associated to
each category.

– A SOURCE CATEGORIZER: Training a statistical translator (translation model plus
language model) from the set of source no-categorized/categorized sentences.
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An approach
( I.Garcia-Varea, F.Casacuberta. An iterative, DP-based search algorithm for statistical machine translation. ICSLP. 1998. )

Source
sentence

Categorization

Source
categorized
sentence

Translation

Target
categorized
sentence

Category
instantiation

Target
sentence

Instances
of source 
categories

Instances 
of target 
categories

Translation

1. CATEGORIZATION: Translating the source sentence into an source categorized
sentence and Obtaining the source instances of each category.

2. CATEGORIZED TRANSLATION: Translating the source categorized sentence into a
target categorized sentence.

3. TRANSLATION OF EACH CATEGORY: Translating the source instances of each category
detected.

4. CATEGORY RESOLUTION: Substitution of each target category by the corresponding
instance translation.
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An example
( I.Garcia-Varea, F.Casacuberta. An iterative, DP-based search algorithm for statistical machine translation. ICSLP. 1998. )

Category Resolution

Categorization
Statistical

Viterbi
Alignment

Statistical Translation

me voy a ir el dia veintiseis de abril a las doce en punto de la mañana

I am leaving on April the twenty-sixth at twelve o’clock in the morning 

I am leaving on $DATE at $HOUR in the morning

me voy a ir el dia $DATE a $HOUR de la mañana
$DATE = veintiseis de abril

$DATE = April the twenty-sixth

$HOUR = las doce en punto 

$HOUR = twelve o’clock 
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Another approach

Source
sentence

Categorization

Source
categorized
sentence

Translation
Constrained 
language 
model

Target
sentence

Translation

1. CATEGORIZATION: Translating the source sentence into an source categorized
sentence.

2. CATEGORIZED TRANSLATION: Translating the source categorized sentence into a
target categorized sentence.

3. DETAILED TRANSLATION: Translating the source non-categorized sentence using the
target categorized sentence as a restricted target language
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Results
EuTrans-I corpus (Spanish-English)

• Vocabulary: 680 Spanish words, and 513 English words.

• Training: 10,000 pairs (97,000/99,000 words).

• Test: 2,996 pairs (PP=8.6/5.2) (35,000/35,590 words).

• Manual categories: 7.

Model categorization WER
Quasi-monotone search manual 6.7

DP-search with M2 manual 9.8
Quasi-monotone search no 10.8

DP-search with M2 no 13.9
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Automatic categorization

• Extended word categories
( Barrachina & Vilar. Bilingual clustering using monolingual algorithms. TMI. 1999. )

1. Align a bilingual corpus
2. Build extended words using the alignments
3. Apply a clustering algorithm to the corpus of extended

word sentences

• Statistical bilingual categories
( Och. An Efficient method for determining bilingual word classes. ECACL. 1999. )

1. Align a bilingual corpus
2. Apply a clustering algorithm to the target corpus.
3. Apply a clustering algorithm to the source corpus taking

into account the categories of target words aligned to the
source words.
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An inverse approach

x
-

SEARCH
argmax

y
Pr(x|y) · Pr(y)

ŷ
-

6 6

Pr(x | y) Pr(y)

�
�

��

@
@

@I

ALIGNMENT MODELS
AND

LEXICON MODELS

TARGET
LANGUAGE MODEL

6 6

BILINGUAL
TRAINING

DATA

TARGET
TRAINING

DATA

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 3: 3



Pattern Recognition approaches to Machine Translation Advanced Statistical Alignment Models

An example of word alignments

. . . . . . . . . . . . . ■
Cabedo . . . . . . . . . . . ■ .
Rosario . . . . . . . . . . ■ . .

de . . . . . . . . . ■ . . .
nombre . . . . . . . . . ■ . . .

a . . . . . . . . . ■ . . .
tranquila . . . . . . . ■ . . . . .

habitación . . . . . . . . ■ . . . .
una . . . . . . ■ . . . . . .
de . . . . . ■ . . . . . . .

reserva . . . . ■ . . . . . . . .
la . . . ■ . . . . . . . . .

hecho . . ■ . . . . . . . . . .
he . ■ . . . . . . . . . . .

I have
m

ade
a reservation
for
a quiet
room
for
R

osario
C

abedo
.
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Alignments

Pr(x | y) =
∑

a∈A(y,x)

Pr(x, a | y) = Pr(J | y) ·
∑

a∈A(y,x)

Pr(x, a | J, y)

Alignment probabilities and lexicon probabilities

• Model 1

• Model 2

• Hidden Markov model

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 3: 5



Pattern Recognition approaches to Machine Translation Advanced Statistical Alignment Models

Models 1, 2 or HMM

y
 1

y
 2

y
 3

y
 4

y
 5

y
 0

target sentence

word alignment

x
 1

x
 2

x
 3

x
 4

x
 5

x
 6

x
 7

source sentence
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Fertility-based models

• Fertility

• Model 3

• Model 4

• Model 5

• Model 6

• The training process

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 3: 8

Pattern Recognition approaches to Machine Translation Advanced Statistical Alignment Models

Models 3, 4, 5 and 6

• Model 3 is a zero-order model: Lexicon, fertility and distortion models.

• Model 4 is a refined version (first-order) of distortion distribution in Model 3.

• Model 5 is a consistent version of distortion distribution in Model 4.

• Model 6 is a log-linear combination of HMM and Model 4.
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Fertility

y
 1

y
 2

y
 3

y
 4

y
 5

y
 0

2 1 0 2 1 1

target sentence

fertility generation

x
 01

x
 02

x
 11

x
 31

x
 32

x
 41

x
 51

word generation

x
 1

x
 2

x
 3

x
 4

x
 5

x
 6

x
 7

permutation generation

source sentence
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Fertility

Fertility φ of yi ∈ ∆: number of the source words connected to an target word yi.

1. Choose how many source words are connected to a target word
yi: fertility of yi

(Φ = φ(yi))

2. Choose a set of the source words, a tablet τi, that is connected to
i-th target word

(Γi,k = τi,k ∈ Σ for 1 ≤ k ≤ φ(yi))

3. Choose the position πi,k in the source sentence of the k-th word
τi,k that is connected to the i-th target word

(Πi,k = πi,k, 1 ≤ πi,k ≤ J)
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An example

Given y: a double room (I = 3)

i 1 2 3
Choose φ(yi) = φ 1 3 1
Choose τi,k = x {una} {con, camas, dos} {habitación}
Choose πi,k = j 1 3 5 4 2

j 1 2 3 4 5
x una habitación con dos camas
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Model 3

Pr(x | y) =
∑
a

Pr(x, a | y) =
∑
a

∑
(τ,π)∈F(x,a)

Pr(φ, τ, π | y)

The probability for a tablet τ and a permutation π is:

Pr(φ, τ, π | y) =
I∏

i=1

Pr(φi | φi−1
1 , y) Pr(φ0 | φI

1, y)×
I∏

i=0

φi∏
k=1

Pr(τi,k | τk−1
i,1 , τ i−1

0 , φI
0, y)×

I∏
i=1

φi∏
k=1

Pr(πi,k | πk−1
i,1 , πi−1

1 , τ I
0 , φI

0, y)×
φi∏

k=1

Pr(π0,k | πk−1
0,1 , πI

1, τ
I
0 , φI

0, y)

• Pr(φi | φi−1
1 , y) ≈ f(φi | yi) fertility probability

• Pr(Γi,k = x | τk−1
i,1 , τ i−1

0 , φI
0, y) ≈ l(x | yi) lexicon probability

• Pr(Πi,k = j | πk−1
i,1 , πi−1

1 , τ I
0 , φI

0, y) ≈ d(j | i, J, I) distortion probability
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Model 3

• Pr(φi | φi−1
1 , y) ≈ f(φi | yi) fertility probability

• Pr(Γi,k = x | τk−1
i,1 , τ i−1

0 , φI
0, y) ≈ l(x | yi) lexicon probability

• Pr(Πi,k = j | πk−1
i,1 , πi−1

1 , τ I
0 , φI

0, y) ≈ d(j | i, J, I) distortion probability

PM3(x | y) =
∑
a

∑
(τ,π)∈F(x,a)

PM3(φ, τ, π | y) =

I∑
a1=0

· · ·
I∑

aJ=0

(
J − φ0

φ0

)
pJ−2φ0
0 pφ0

1

I∏
i=1

φi! · f(φi | yi)
∏̇J

j=1
l(xj | yaj

) · d(j | aj, J, I)
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Model 3
• Pr(φi | φi−1

1 , y) ≈ f(φi | yi) fertility probability

• Pr(Γi,k = x | τk−1
i,1 , τ i−1

0 , φI
0, y) ≈ l(x | yi) lexicon probability

• Pr(Πi,k = j | πk−1
i,1 , πi−1

1 , τ I
0 , φI

0, y) ≈ d(j | i, J, I) distortion probability

Given a target sentence y of length I,

1. For each 1 ≤ i ≤ I choose a length φi according to f(φi | yi).

2. Choose a length φ0 according to f0(φ0 |
∑I

i=1 φi).

3. J =
∑I

i=0 φi.

4. For each 1 ≤ i ≤ I and 1 ≤ k ≤ φi, choose a source word τi,k ∈ Σ according
to l(τi,k | yi).

5. For each 1 ≤ i ≤ I and 1 ≤ k ≤ φi, choose a position πi,k (1 ≤ πi,k ≤ J) in the
source sentence according to d(πi,k | i, J, I).

6. If any position has been choosen then error (inconsistent model).

7. For each 1 ≤ k ≤ φ0 choose a position π0,k from the vacant positions according
to a uniform distribution.
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An example

Given y: a double room (I = 3)

i 1 2 3
Choose φ(yi) = φ using f(φ|yi) 1 3 1
Choose τi,k = x using l(x|yi) {una} {con, camas, dos} {habitación}
Choose πi,k = j using d(j|i, I, J) 1 3 5 4 2

j 1 2 3 4 5
x una habitación con dos camas
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Examples of alignments

Corpus EUTRANS-I: Spanish-English

1 2 3 4 5 6 7 8 9 10
por favor , ¿ podrı́a ver alguna habitación tranquila ?

• MODEL 1, ITERATION 5
could (5) I (6) see (6) a (7) quiet (9) room (8) , (3) please (2) ? (4)

• MODEL 2, ITERATION 2
could (5) I (6) see (6) a (7) quiet (9) room (8) , (3) please (3) ? (10)

• MODEL 3, ITERATION 2
could (5) I (5) see (6) a (7) quiet (9) room (8) , (3) please (2) ? (10)
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Model 4

For a target word yi:

• The center of yi, c(i) =
P

k πi,k

φi

• Pr(φi | φi−1
1 , y) ≈ f(φi | yi) fertility probability

• Pr(Γi,k = x | τk−1
i,1 , τ i−1

0 , φI
0, y) ≈ l(x | yi) lexicon probability

• Pr(Πi,1 = j | πi−1
1 , τ I

0 , φI
0, y) ≈ d=1(j − c(i− 1) | CY(yi−1), CX (xj))

distortion probability for the first position in a tablet

• Pr(Πi,k = j | πk−1
i,1 , πi−1

1 , τ I
0 , φI

0, y) ≈ d>1(j − πi,k−1 | CX (xj))

distortion probability for the rest of positions in a tablet
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Model 4

y1 . . . yi−1 yi . . . yI

φ1 . . . φi−1 φi . . . φI

{x1,1, . . . , x1,φ1} . . . {xi−1,1, . . . , xi−1,φi−1
} {xi,1, . . . , xi,φi

}. . .{xI,1, . . . , xI,φI
}

{π1,1 < · · · < π1,φ1}. . .{πi−1,1 < · · · < πi−1,φi−1
}

c(1) =
Pφ1

t=1 π1,r

φ1
. . . c(i− 1) =

Pφi−1
t=1 π1,r

φi−1

πi,1 = j according to d=1(j − c(i− 1) | CY(yi−1), CX (xi,1))

πi,k = j, for 1 < k ≤ φi, according to d>1(j − πi,k−1 | CX (xi,k))

πi,1 < · · · < πi,φi
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Model 4

• f(φi | yi) fertility probability

• l(x | yi) lexicon probability

• d=1(j − c(i − 1) | CY(yi−1), CX(xj)) distortion probability for the first position in a tablet

• d>1(j − πi,k−1 | CX(xj)) distortion probability for the rest of positions in a tablet

Given a target sentence y of length I,

1. For each 1 ≤ i ≤ I choose a length φi according to f(φi | yi).

2. Choose a length φ0 according to f0(φ0 |
∑I

i=1 φi).

3. J =
∑I

i=0 φi.

4. For each 1 ≤ i ≤ I and 1 ≤ k ≤ φi, choose a source word τi,k according to l(τi,k | yi).

5. For each 1 ≤ i ≤ I and 1 ≤ k ≤ φi, choose a position πi,k

• if k = 1 according to d1

• if k > 1 according to d>1 but greater than πi,k−1

6. If any position has been choosen then error . (inconsistent model)

7. For each 1 ≤ k ≤ φ0 choose a position π0,k from the vacant positions according to a
uniform distribution.
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Examples of alignments

Corpus EUTRANS-I: Spanish-English

1 2 3 4 5 6 7 8 9 10 11 12 13
por favor , he hecho una reserva a nombre de Federico Redondo .

[2-2] I (4) have (4) made (5) a (6) reservation (5) for (9) Federico (11) Redondo (12) . (0)
[4-2] I (4) have (5) made (5) a (6) reservation (7) for (9) Federico (11) Redondo (12) . (13)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
me voy a ir el jueves tres de junio a la una y media de la tarde .

[2-2] I (2) am (2) leaving (2) on (5) Thursday (6) June (9) the (5) third (9) at (10) half (14)
past (13) one (11) in (4) the (11) afternoon (17) . (18)

[4-2] I (2) am (2) leaving (2) on (5) Thursday (6) June (9) the (0) third (7) at (10) half (14)
past (13) one (11) in (15) the (16) afternoon (17) . (18)

[4-5] I (2) am (2) leaving (2) on (5) Thursday (6) June (9) the (0) third (7) at (10) half (14)
past (13) one (12) in (15) the (16) afternoon (17) . (18)
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Model 5

For a target word yi:

• Number of vacant positions up to and including position j
just before τi,k is placed, v(j, τ i−1

1 , τk−1
i,1 ) ≡ vj.

• Pr(φi | φi−1
1 , y) ≈ f(φi | yi) fertility probability

• Pr(Γi,k = x | τk−1
i,1 , τ i−1

0 , φI
0, y) ≈ l(x | yi) lexicon probability

• Pr(Πi,1 = j | πi−1
1 , τ I

0 , φI
0, y) ≈ d=1(vj | CX (xj), vc(i−1), vJ−φi +1) · (1−δ(vj, vj−1))

distortion probability for the first position in a tablet

• Pr(Πi,k = j | πk−1
i,1 , πi−1

1 , τ I
0 , φI

0, y) ≈
d>1(vj−vπi,k−1

|CX (xj), vJ −vπi,k−1
−φi +k) · (1−δ(vj, vj−1))

distortion probability for the rest of positions in a tablet
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Model 6

A linear combination of Model 4 and Homogeneous hidden Markov model.

PrM6(x | y) = α · PrM4(x | y) + (1− α) · PrHM(x | y)
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The training process

H. Ney, Statistical Natural Language Processing, STC Doctorate Program, UPC. 2003

• Maximum likelihood by EM estimation.

• The counts in the reestimation are multiplied by PrM(x, a | y) and are added for all
possible alignment.

• No efficient method is computing these estimated counts.

• The estimated counts are approximate by:

– Computing the (approximate) most probable alignment (Model 2)
– Apply modifications: moves and swaps
– Sum the estimated counts for all alignments whose probability is larger than the

probability of the probable alignment times a given constant.
– More details: P. F. Brown et al. The mathematics of statistical machine translation:

parameter estimation. Computational Linguistics, vol. 19 (2), 263–310, 1993.
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Conventional IBM Models Training

• Every model has a specific set of free parameters.

• For example for IBM Model 4: θ =
{
{l(x|y)} , {p=1(∆j)} , {p>1(∆j)} , {p(φ|x)} , p1

}
• To train the model parameters θ: A maximum likelihood criterium, using a parallel

training corpus consisting of S sentence pairs {(x(n), y(n)) : n = 1, . . . , N}:

θ̂ = argmax
θ

N∏
n=1

∑
a

pθ(x(n), a|y(n)) .

• The training is carried out using the Expectation-Maximization (EM) algorithm.
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The EM algorithm
Given a set of pairs (xn, yn), for n = 1, . . . , N ,

• Initialize parameters θ = {l(x|y), . . . }

• Iterate (EM-procedure)

– In the E-step, the lexicon parameter counts for every sentence pair (y, x) are
calculated:

c(x|y; y, x) = N(y, x) ·
∑

a
Pr(a|y, x)

∑
j

δ(x, xj)δ(y, yaj
)

– In the M-step, the lexicon parameters l̂(s|t) that maximize the likelihood on the
training corpus are computed:

l̂(x|y) =
∑

n c(x|y; x(n), y(n))∑
n,s c(x|y; x(n), y(n))

Similarly, the alignment/distortion and fertility parameters can be estimated for all
other alignment models.

• Compute Viterbi alignments

The output is a set of aligned sentence pairs V (xn, yn); θ̂
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The search problem in statistical machine translation

ŷ = argmax
y

Pr(x | y) · Pr(y)

• Search is a NP-Hard problem. (Knight, 1999)

• Algorithmic solutions: (+ heuristics for efficient suboptimal solutions)

– Dynamic Programming (Garcia-Varea, 2003) (Tillman, 2003)

– Stack-decoding, A? or Branch & Bound (Ortiz , 2003)

– Greddy strategies (Germann, 2001)

– Using finite-state transducers (Kumar, 2004)
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Dynamic programming approach:
DPSearchM2 for the models 3, 4 and 5 ∗

• Using DPSearchM2 and Viterbi alignments.

• The Viterbi alignments for models 3, 4 and 5, are based on model 2.

• Solution:

– In the final states in DPSearchM2
– To choose the hypothesis with the best Viterbi score for a model M .
– To iterate the process.

• Computational complexity: O(J · Imax · L · |E|2)

∗The slides on searching are modified versions of some material supplied by Ismael Garcı́a-Varea
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Some stack-decoding proposals

• Candide systems from IBM [Berger et al. 96]: Multiple stacks, model 3.

• Multiple stack-decoding [Wang and Waibel 98]: Model 2.

• Algorithm A? [Ueffing et al. 01]: model 4.

• Algorithm A? [Och and Ney 03]: model 6.

• Basic stack-decoding strategy:

– Origin of the stack decoding or A?: ASR

– Optimal solution to the search problem (Jelinek, 1976)

– Incremental development of pratical hyphotesis

– The hypothesis are stored in a prioritary queue (a type of ‘stack’)

– Selection and expansion of the top of the stack(s).
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A taxonomy of the stack-decoding algorithms

• Basic stack-decoding algorithm:

– All the hypothesis are stored in a one stack
– A hypothesis is selected in each iteration: the hypothesis with higher score in the

stack

• Problem: hypothesis with a high number of aligned words are discarded.

• Possible solutions:

– Use of heuristics: an estimation of the contribution to the set of the optimal score.
– Multiple stacks.

• Taxonomy:

– Single stack algorithms A?

– Multiple stack algorithms
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Basic multiple stack decoding StackDecoding

• A hypothesis in a stack:

– A prefix of the target sentence (yi
1)

– A coverage subset of source positions (C)
– A score (S).

• There is one stack for each possible subset of source positions which words has
already been translated.

• The possible number of stacks can be very high.

• In each iteration, the best hypothesis from each available stack is selected to generate
new extended hypothesis.

• The new target prefix is the concatenation of the target prefix of the selected
hypothesis and each possible target word.

• The new source positions are selected from the complementary set of C (assuming
some constraints).

• The new score is computed using the new ngram and the new source positions.

• The new hypothesis is stored in the corresponding stack.
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Basic multiple stack decoding StackDecoding

Source sentence: "the configuration program"

-- -- --

the -- --

-- configuration --

-- -- program

the configuration --

the -- program

-- configuration program

the configuration program
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Basic greedy algorithm GreedySearch

• Previous works: [Germann et al. 01] for models 3 and 4.

• Characteristics:

– Local optimization
– No incremental building of hyphotesis
– Dependence on the initialization
– Aproximation to the search problem.
– Fast.
– They can be used to refine other algorithms.
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Basic greedy algorithm GreedySearch

• Algorithm:

– An initial complete hypothesis and the corresponding alignment are required.
– The hypothesis is modified iteratevely until no improvements are achieved.
– Hillclimbing algorithm
– Building a neighbourhood from 〈y, a〉

• Temporal cost: O(J2 · |E|2 · I2)
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Experiments

• EUTRANS-I corpus:

– Training: 10,000 pairs
– Test: 2,636 sentences (length ≤ 15)

• HANSARDS corpus:

– Training: 128.000 pairs
– Test: 500 sentences of 4, 6, 8, 10, 12 words

• Translation models: IBM+HMM, 1525354555

• Language models: 3-grams + smoothing Good Turing

• Assessment:

– Word Error Rate (WER): The minimum number of substitution, insertion and
deletion operations needed to convert the word string hypothesized by the
translation system into a given single reference word string.

– Position Independent word error Rate (PER): Similar to WER but the order
is not taken into account.
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The HANSARD corpus

• Task definition:

– Proceedings of the Canadian parliament. (French → English)
– Vocabulary sizes (more than two occurrences): 58.016 (French), 42.055 (English).
– Training set: 1, 7× 106 pairs (sentence length less than 30)
– Test set: 73 sentences.

• First results in (Brown et al. 1993)

– Models:
∗ 12 training iterations (1 IBM1 + 6 IBM2 + 1 IBM3 + 4 IBM5)
∗ Language model: trigrams.
∗ Search: stack-decoding.

– Results:
∗ 48% of sentences were successfully translated.
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The EUTRANS-I corpus

• Vocabulary: 680 Spanish words, and 513 English words.

• Training: 10,000 pairs (97,000/99,000 words).

• Test: 2,996 pairs (PP=3.3) (35,000/35,590 words).
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Experimental results

• EUTRANS-I corpus:

Strategy sec. SerErr ModErr Accuracy WER PER
DPSearch-M2 55.7 5.5 55.2 39.3 12.7 10.5
DPSearch-M4 69.5 12.2 45.1 42.7 10.2 9.4

StackDecoding-M4 87.1 18.4 44.1 37.5 14.2 11.1
GreedySearch-M3 18.7 61.3 20.5 18.2 24.8 18.6
GreedySearch-M4 165.9 53.0 23.3 23.7 20.0 16.2

• HANSARDS corpus:

Strategy seg. SerErrs ModErr Accuracy WER PER
DPSearch-M2 102.9 2.6 81.2 16.2 50.5 46.8

StackDecoding-M4 163.1 12.0 78.6 9.4 54.2 51.3
GreedySearch-M3 17.0 15.0 75.0 10.0 55.9 51.0

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 3: 39



Pattern Recognition approaches to Machine Translation Advanced Statistical Alignment Models

Comparasion results

EUTRANS-I task HANSARDS task
Search strategy WER PER WER PER
DPSearch-M2 12.7 10.5 50.5 46.8
DPSearch-M4 10.2 9.4
StackDecoding-M4 14.2 11.1 54.2 51.3
GreedySearch-M3 24.8 18.6
GreedySearch-M4 20.0 16.2 55.9 51.0

SWB(1) 10.8 10.0 64.9 51.4
SWB+IBM(1) 64.9 51.4
AT(1) 4.4 2.9 61.5 49.2
A?(2) 68.7 61.5
A?(3)-M4 5.5

(1) In [Och 02] (Ph.D.)
(2) In [Ueffing et al. 02] for sentences (≤ 12) and computational time of 127 sec.
(3) In [Prat 02].
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Results with categories

EUTRANS-I task
Model categorization WER

Alignment templates manual 2.5
STM category translation + A∗ with M4 automatic 3.8

Alignment templates automatic 4.4
A∗ with M4 no 5.3

Quasi-monotone search manual 6.7
STM no 7.0

DP-search with M2 manual 9.8
Quasi-monotone search no 10.8

DP-search with M2 no 13.9
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Context-dependent lexicon models ∗

• The performance of a statistical machine translation system depends on the quality
of lexicon and alignment models used.

• Typically, these statistical alignment models are based on single-word dependencies
→ lack of useful context information that can lead to inadequate alignments.

• A possible solution would be to include more dependencies in the lexicon model i.e.
l(xj|yaj−1

, yaj
) ⇒ problem: significant data sparseness.

• A possible solution: Use maximum entropy to build context-dependent lexicon
models.

• Some advantages of using maximum entropy

– Easy to integrate additional knowledge sources
– No problem with overlapping features
– Well-founded mathematical theory
– Efficient training algorithms
– · · ·

∗The slides on searching are modified versions of some material supplied by Ismael Garcı́a-Varea
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Maximum entropy principle

• A model that takes a context w into account ⇒ py(x|w) instead of l(x|y).

• The properties that can be useful: by feature functions φy,k(w, x), k = 1, . . . ,Ky.

– For example, to model the existence or absence of a specific target word y′ in the
context of a target word y, which can be translated by the source word x′.

– This dependence using the following indicator function (feature):

φy,1(w, x) =
{

1 if x = x′ and y′ ∈ w
0 otherwise

Consequently the first feature for word y has associated the pair (y′, x′).
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Maximum entropy principle

• The entropy maximum principle suggests that the optimal parametric form of a model
py(x|w) taking into account the feature functions φy,k, k = 1, . . . ,Ky is given by:

py(x|w) =
1

ZΛt(w)
· exp


Ky∑
k=1

λy,k · φy,k(w, x)


• The resulting model has an exponential form with free parameters:

Λy ≡ {λy,k, k = 1, . . . ,Ky}

• The parameter values that maximize the likelihood for a given training corpus can be
computed using the so-called GIS algorithm.
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Contextual information and features definition

• A model py(x|w) and a sample training for each target word y are needed.

• In a pair of sentences (x, y), contextual information (easily extended):

– Target context: yi−3...yi...yi+3

– Source context: xj

– Word classes: syntactic and semantic information (T (yi),S(xj)).

• Feature categories:

Category φyi,k
(w, xj) = 1 if and only if ...

1 xj = � and �∈ yi

2 xj = � and �∈ • yi

3 xj = � and �∈ yi •
4 xj = � and �∈ • • • yi

5 xj = � and �∈ yi • • •

In all cases the k-th feature has associated the pair (�,� ).
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Maximum entropy models training integration

• Model parameters to be learnt: Λt ≡ {λt,k : k = 1, . . . ,K}

• In the E-step, a refined count collection for the lexicon parameters is performed

c(x|y, w; x, y) = N(x, y) ·
∑

a
Pr(a|x, y)

∑
j

δ(x, xj)δ(y, yaj
)δ(w,wj,aj

)

wj,aj
≡ the maximum entropy context that surrounds xj and yaj

• In the M-step, the new lexicon parameters are computed:

Λ̂y = argmax
Λy

∏
x,w

c(s|y, w; x, y) · log py(x|w)

c(x|y, w; x, y) ≡ weights of the training samples (x, y, w) used to train the maximum
entropy model (number of times that (x, y, w) occurs).

• The re-estimation of the alignment/distortion and fertility probabilities does not change
if we use a maximum entropy lexicon model.
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The EM-ME algorithm
Given a set of pairs (xn, yn), for n = 1, . . . , N ,

• Initialize parameters θ = {l(x|y), . . . }

• Iterate (EM-procedure)

– In the E-step:
1. Collect counts for alignment/distortion and fertility parameters.
2. Collect refined lexicon counts (Overhead on space and computation time).

– In the M-step:
1. Reestimate alignment/distortion and fertility parameters.
2. Perform GIS training for lexicon parameters (Overhead on space and

computation time).

• Compute Viterbi alignments

The output is a set of aligned sentence pairs V (xn, yn); θ̂; Λ̂y
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Potential problems of the ME-EM integration

• Computation overhead:

– In the k-th iteration of the E-step
– In the M-step the computation of the GIS training for each word

• Space overhead:
We have to store every possible maximum entropy training event (s, t, x), that is, every
possible combination of t ∈ VT , s ∈ VS and x ⇒ requires a huge quantity of memory.
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Experimental results

• Efficiency: time consumption of different approaches.

• Performance: comparison of the alignment quality (of 500 randomly selected pairs)
obtained with all the IBM models (1 to 5) with and without using maximum entropy
modeling.

• Tasks: Verbmobil and Hansards

Verbmobil Hansards
German English French English

Training Sentences 34,446 1,470K
Words 329,625 343,076 24.33M 22.16M
Vocabulary 5,936 3,505 100,269 78,332
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Experimental results

Time consumption results

• Time consumption in seconds of different approaches per EM iteration (on average
for the five IBM models) for different sizes of training corpus.

Task Size of train. # of e Conventional train ME-train Simplified ME-train

Verbmobil
0.5K 29 1 29 1.5
8K 84 18 235 68

35K 209 60 2290 675

Hansards
0.5K 15 2.5 29 3
8K 80 35 1180 100

128K 1214 655 16890 6870
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Alignment quality results: evaluation methodology

• An annotation scheme that explicitly
allows for ambiguous alignments.

• Two different kinds of alignments: a
S(ure) alignment (unambiguous �) and
a P (ossible) alignment (ambiguous �).

• The P labels are used specially to align
words within idiomatic expressions, free
translations, and missing function words
(S ⊆ P ).

• Reference alignment: many-to-one and
one-to-many relationships.

Example of a manual alignment

tous

deux

poss‘edent

de

nombreuses

anne’es

de

exp’erience

dans

la

fabrication

et

la

distribution

de

les

produits

forestiers

.

b
o
t
h

h
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e

m
a
n
y

y
e
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s

e
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Alignment quality results: evaluation criterion

• The quality of an alignment A = {(j, aj)|aj > 0} is then computed by appropriately
redefined precision and recall measures:

recall =
|A ∩ S|
|S|

, precision =
|A ∩ P |
|A|

and using the following alignment error rate, which is derived from the well known
F-measure:

AER(S, P ;A) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

• In such a way, a recall error can only occur if a S(ure) alignment is not found and a
precision error can only occur if the found alignment is not even P (ossible).
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Alignment quality results: AER
• AER of 500 randomly selected sentence pairs.

Hansards task Verbmobil task
Size of train corpus Size of train corpus

Training Scheme Model 0.5K 8K 128K 0.5K 8K 34K

15 1 48.0 35.1 29.2 27.7 19.2 17.6
1+ME 47.7 32.7 22.5 24.6 16.6 13.7

1525 2 46.0 29.2 21.9 26.8 15.7 13.5
2+ME 44.7 28.0 19.0 25.3 14.1 10.8

152533 3 43.2 27.3 20.8 25.6 13.7 10.8
3+ME 42.5 26.4 17.2 24.1 11.6 8.8

15253343 4 41.8 24.9 17.4 23.6 10.0 7.7
4+ME 41.5 24.3 14.1 22.8 9.3 7.0

1525334353 5 41.5 24.8 16.2 22.6 9.9 7.2
5+ME 41.5 24.5 14.3 22.3 9.6 6.8

• The alignment error rate improves using the context-dependent lexicon models.

• For the Verbmobil task, the improvements are smaller than for the Hansards task,
which might be due to the fact that already the baseline alignment quality is very
good.
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Alignment quality results: precision and recall

• Precision and recall [%] results for Hansards task for different corpus sizes in every
iteration of the training:
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Is the linguistic knowledge needed for
statistical machine translation?

• YES?

– There are many linguistic knowledge available.

– The bilingual training data can be better exploited.

• NOT?

– Many linguistic knowledge is hard to formalize.

– The generation of new linguistic knowledge requires great human effort.
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Linguistic knowledge that has been used in
statistical machine translation

• Morpho-syntactic knowledge: lexicon, Part-of-Speech, etc...
(Nießen and Ney, 2004)

Hybrid linguistic-statistical approaches have been used with success (i.e.
hidden markov models)

• Others: Cognates (Kondrak, Marcu and Knight, 2003), named entities
(Huang, Vogel and Waibel, 2003), ...

• Syntactic information: next talk!
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Morpho-syntactic knowledge in
statistical machine translation

Nießen and Ney, 2004. Statistical machine translation with scarce resources using morpho-syntactic information. Computational Linguistics.

• Present statistical machine translation systems often treat different inflected forms of
the same lemma as if they were independent of one another.

• The bilingual data can be better exploited by explicitely taking into account the
interdependencies of related inflected forms.

A possible proposal: HIERARCHICAL LEXICON MODELS
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Morpho-syntactic knowledge in statistical machine translation

yo como pan

• Morphological and syntactic tags (POS, tense, person, ...)

• The base form

T = t61 = comer verb indicative present singular 1
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Morpho-syntactic knowledge in statistical machine translation

Pr(x | y) =
∑

a∈A(y,x)

Pr(J | y) · Pr(a | J, y) · Pr(x | a, J, y)

(tn1 )j ≡ Tj

Pr(x | a, J, y) =
∑
T J

1

Pr(x, T J
1 | a, J, y)

=
∑
T J

1

J∏
j=1

Pr(xj, Tj | xj
1, T

j
1 , a, J, y)

≈
∑
T J

1

J∏
j=1

l(xj, Tj | yaj
)

A lemma-tag lexicon: l(xj, Tj | yaj
)
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Estimation of the lemma-tag lexicon

Maximum entropy modelling

l(s, T | t) ≡ lΛ(s, T | t) =
exp [

∑
m λmhm(t, s, tn1 )]∑

s̄,t̄n
1
exp [

∑
m λmhm(t, s̄, t̄n1 )]

Λ = {λm}

• During training, the sum on s̄ and t̄n1 is restricted to the reading of word forms having
the same base form and partial reading as a word forms aligned at least once with t.

• Three types of feature functions for maximum entropy modeling: 1. Base forms; 2.
Subsets of tags and 3. Fully inflected words.
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Experiments

Nießen and Ney, 2004. Statistical machine translation with scarce resources using morpho-syntactic information. Computational Linguistics.

• Verbmobil task:

– Automatic translation of spontaneously spoken dialogs (English → German)
– Vocabulary sizes: 1. 4,674 word forms (English) and 7,940 word forms (German).

2. 3,639 base forms (English) and 6,063 base forms (German)
– Training set: 58,073 pairs (549Kw/519Kw).
– Test set: 527 sentences.

• Results (m-WER):

– 31.8% (34,1% in the baseline).
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Open problems

• Automatically induction of the morphology of inflectional languages using only text
corpora and no human input: Using prefix trees (Schone and Jurafsky, 2000) or pairs
of hidden Markov models (Clark, 2000)

• Using “conventional” dictionaries (collections of word or phrase pairs collected by
hand) (Nießen and Ney, 2004)

• Unknown words by some semantic information of the context words (Widdows, 2003).

• Extracting named entity translingual equivalences from bilingual parallel corpora
(Huang, Vogel and Waibel, 2003)

• Using cognates (Kondrak, Marcu and Knight, 2003)
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Pattern Recognition, Natural Language Processing
and Finite-State Transduction

• (Stochastic) Grammars and Automata are adequate models for
Classification tasks. But there are many Pattern Recognition
problems which are better framed within the most general
Interpretation paradigm

• Interpretation tasks and be conceptually (and practically) tackled
through Formal Transduction.

• E.g., many Continuous Speech Recognition and Understanding
tasks can be seen as (simple) transductions from certain acoustic,
phonetic or lexical input sequences into output sequences of
higher-level linguistic categories

• Many direct applications such as Language Translation and
Semantic Decoding

• Simple transducers are often powerful enough to deal with useful
mappings between complex languages
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Probabilistic problem statement

Given a source text x, its most probable translation is given by:

ŷ = argmax
y

Pr(y | x) = argmax
y

Pr(x, y)

The joint probability Pr(x, y) can be adequately modelled by
means of a stochastic finite-state transducer T :

Pr(x, y) ≈ PT (x, y)

However, not all the transduction tasks are equally difficult. . .
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Not all the transduction tasks are equally difficult: examples

• 1... Spanish to English, word by word
¿A QUE HORA SALE EL VUELO MAS TEMPRANO DE BOSTON A DENVER EN TWA?
to what time departs the flight more early of Boston to Denver in TWA?

• 2... Division by 7
3 5 7 6 8 1 8 0 3 1 ( : 7 = )
0 5 1 0 9 7 4 0 0 4

• 3... English to Decimal
NINEHUNDREDANDNINETEENTHOUSANDANDNINE

9 19 0 09

• 4... Roman to Decimal
III XIX XLII LXXIV CDII CMLXXXIX

3 19 4 2 74 4 02 9 8 9

• 5... ATIS: English to ”Pseudo English”
WHAT IS THE DEPARTURE TIME OF TWA EARLIEST FLIGHT FROM BOSTON TO DENVER?
List departure time of earliest morning TWA flights from Boston and to Denver

• 6... Spanish to English
¿A QUE HORA SALE EL VUELO MAS TEMPRANO DE BOSTON A DENVER EN TWA?
What is the departure time of TWA earliest flight from Boston to Denver?
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• 3... English to Decimal
NINEHUNDREDANDNINETEENTHOUSANDANDNINE

9 19 0 09

• 4... Roman to Decimal
III XIX XLII LXXIV CDII CMLXXXIX

3 19 4 2 74 4 02 9 8 9

• 5... ATIS: English to ”Pseudo English”
WHAT IS THE DEPARTURE TIME OF TWA EARLIEST FLIGHT FROM BOSTON TO DENVER?
List departure time of earliest morning TWA flights from Boston and to Denver

• 6... Spanish to English
¿A QUE HORA SALE EL VUELO MAS TEMPRANO DE BOSTON A DENVER EN TWA?
What is the departure time of TWA earliest flight from Boston to Denver?
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Not all the transduction tasks are equally difficult

1. Spanish to English, word by word

2. Division by 7

3. English to Decimal

4. Roman to Decimal

5. ATIS: English to ”Pseudo English”

6. Spanish to English

Rational or Finite-State

Subsequential

Sequential

More complex Transduction Tasks

1

3 4
2

5?
6?

THE MAIN CONCERN IS THE REQUIRED degree of “sequentiality” OR

position monotonicity BETWEEN INPUT-OUTPUT SUBSEQUENCES
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Finite State Transducers (FST): formal definition

A Finite State or Rational Transducer τ is a 6-tuple τ = (Q,X, Y, q0, QF , E):

Q: Finite set of States
X, Y : Input and output Alphabets
q0 ∈ Q: Initial State
QF ⊂ Q: Set of Final States
E ⊂ Q×X∗ × Y ∗ ×Q: “Edges” or Transitions

Transitions can equivalently defined as E ⊂ Q× (X ∪ λ)× Y ∗ ×Q.

EXAMPLE

c / 2

b / 1 c / 11

c / 00

a / λ

λc /

λc /

λ / 3

c / 1

λ / 3A

B

C

D

E

Tτ = { (λ, λ), (cb, 213), (ccb, 2213),
(a, λ), (ac, 003), (cac, 2003),
(c, 2), (bc, 111), (cbc, 2111),
(b, 13), (bc, 113), (cbc, 213003),
(ca, 2), (bc, 13003), (bcc, 1113),
(cc, 22), (cca, 22), · · · · · · }

Three possible types of ambiguity: input, output and path
E. Vidal – ITI-UPV-DSIC January 2005 Page 4.7
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Another example of a (very small) FST for a toy, but real task

(Learned from MLA Spanish-English training sentences with OSTIADR
using input and output 4-Gram constraints)

tra/m3dr_12.50.tra

0
1

se / 

2

un / a 

3

aNade / a 

4elimina / the 

5cuadrado / 

6

circulo / 

7

triangulo / 

un / 

8
el / 

10

toca / square touches a 
tocan / square touch a 

37

estan / square are 
14# / square 

21

muy / square is added far 

27

encima / square is added above the 
debajo / square is added below the 

22

a / square is added to the 

9

esta / square is 
11

y / square and a 

12

pequeNo / small 
grande / large 

mediano / medium 
13

oscuro / dark square 

claro / light square 

toca / circle touches a 
tocan / circle touch a 

estan / circle are 

# / circle 

muy / circle is added far 

debajo / circle is added below the 
encima / circle is added above the 

a / circle is added to the 

esta / circle is 

y / circle and a 

oscuro / dark circle 
claro / light circle 

15

grande / large 
mediano / medium 

pequeNo / small 

toca / triangle touches a 

tocan / triangle touch a 

estan / triangle are 

# / triangle 

muy / triangle is added far 

encima / triangle is added above the 
debajo / triangle is added below the a / triangle is added to the 

esta / triangle is 

y / triangle and a 

claro / light triangle 
oscuro / dark triangle 

16

grande / large 

mediano / medium 
pequeNo / small 

17

cuadrado / 

18triangulo / 

19
circulo / 

a / 

muy / far 

a / to the 

44

encima / above a 
debajo / below a 

a / to the 
30por / 

34

del / 

31la / 

muy / far 
a / to the 

20
debajo / below a 
encima / above a 

un / 

toca / square touches a 
tocan / square touch a 

estan / square are 

muy / square is added far 

debajo / square is added below the 
encima / square is added above the 

a / square is added to the 

esta / square is 

29

que / square which is 

23

# / square 

24

y / 

toca / touches a 

tocan / touch a 
estan / are 

muy / is added far 

debajo / is added below the 

encima / is added above the 

a / is added to the 

esta / is 

y / and a 

que / which is 

# / 

toca / circle touches a 
tocan / circle touch a 

estan / circle are muy / circle is added far 

encima / circle is added above the 
debajo / circle is added below the 

a / circle is added to the 
esta / circle is 

que / triangle which is 

# / circle 

25

y / 

toca / triangle touches a 

tocan / triangle touch a 

estan / triangle are 

muy / triangle is added far 

encima / triangle is added above the 
debajo / triangle is added below the 

a / triangle is added to the 
esta / triangle is 

que / circle which is 

# / triangle 

26

y / 

pequeNo / small 
grande / large 

mediano / medium 

que / square which is 
28

oscuro / dark square which is 

claro / light square which is 
pequeNo / small 

grande / large 
mediano / medium 

que / triangle which is 

claro / light triangle which is 
oscuro / dark triangle which is 

pequeNo / small 
grande / large 

mediano / medium 

que / circle which is 

oscuro / dark circle which is 

claro / light circle which is 

de / 

35esta / 

un / square and a 

oscuro / dark square 
claro / light square 

un / circle and a 

32oscuro / dark 
claro / light 

un / triangle and a 

33
claro / light 

oscuro / dark 

que / 

36
encima / above 
debajo / below 

izquierda / left of 
derecha / right of 

toca / circle touches a 
tocan / circle touch a 

estan / circle are muy / circle is added far 

encima / circle is added above the 
debajo / circle is added below the 

a / circle is added to the 

esta / circle is 

y / circle and a 

que / triangle which is # / circle 

toca / triangle touches a 
tocan / triangle touch a 

estan / triangle are 

muy / triangle is added far 

debajo / triangle is added below the 
encima / triangle is added above the 

a / triangle is added to the 

esta / triangle is 

y / triangle and a 

que / circle which is 

# / triangle 

38circulo / 

39

triangulo / 

40cuadrado / 

41

encima / above the 
debajo / below the 

42
a / to the 

43muy / far 

de / a 

del / the 
53# / circle 

45y / circle and the 

46
mediano / medium 

grande / large 

pequeNo / small 
47

oscuro / dark circle 
claro / light circle # / triangle 

y / triangle and the 
oscuro / dark triangle 
claro / light triangle 
48pequeNo / small 

mediano / medium 

grande / large 

# / square 

y / square and the 

claro / light square 
oscuro / dark square 

49
grande / large 

pequeNo / small 
mediano / medium 

50del / 

51la / 

a / to the 52por / 

de / 

del / 

# / circle 

54
y / 

# / 

y / and the 

# / triangle 

55

y / 

# / square 

56

y / 

57
triangulo / 

58cuadrado / 

59

circulo / 

derecha / right of the 

izquierda / left of the 
debajo / below the 
encima / above the 

del / circle and the 

oscuro / dark circle 
claro / light circle 

del / triangle and the 
claro / light triangle 

oscuro / dark triangle 

del / square and the 

oscuro / dark square 
claro / light square 

65

# / triangle is removed 

60
mediano / medium 

grande / large 
pequeNo / small 

61

oscuro / dark triangle 
claro / light triangle 

62

y / triangle and the 
# / square is removed 

oscuro / dark square 
claro / light square 

y / square and the 

63
mediano / medium 

grande / large 
pequeNo / small 

# / circle is removed claro / light circle 
oscuro / dark circle 

y / circle and the 

64
mediano / medium 

pequeNo / small 
grande / large 

# / triangle is removed 

66

y / 

# / is removed 

y / and the 

del / 

# / square is removed 

67

y / 

# / circle is removed 

68

y / del / triangle and the 

claro / light triangle 
oscuro / dark triangle 

del / square and the claro / light square 
oscuro / dark square 

del / circle and the 

claro / light circle 
oscuro / dark circle 

E. Vidal – ITI-UPV-DSIC January 2005 Page 4.8



Pattern Recognition Machine Translation Stochastic Finite-State Transducers

Finite State Transducers: Paths and Translations

• A path P of a Finite State transducer τ = (Q,X, Y, q0, QF , E)
is a sequence of transitions of E

• A translation of τ is pair of strings (x, y) ∈ X∗ × Y ∗ such that
there is a path P in τ which “matches” x and y; that is:

P = (q′1, u1, v1, q1), (q′2, u2, v2, q2), · · · , (q′m, um, vm, qm)

q′1 = q0, qi = q′i+1 1 ≤ i < m, qm ∈ QF

x = u1 · · ·um, y = v1 · · · vm

• Tτ ⊂ X∗ × Y ∗ : Tτ = {(x, y) which are translations of τ}

• Let P(τ, x, y) be the set of matching paths of x, y in τ .

τ is ambiguous if ∃x′, y′ such that |P(τ, x′, y′)| > 1

Example: P(τ, bcc, 1113) =
{(A, b, 1, C)(C, c, 1, C)(C, λ, 3, B), (A, b, 1, c)(C, c, 11, E)(C, λ, 3, B)}
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Finite State Transducer Learning and Grammatical Inference

• A Finite State (regular) Grammar (FSG), G, can be seen as a
particular case of Finite State Transducer (FST), T which, for each
input string x, produces an output string y, such that y =YES if x
belongs to the language of G and y =NO otherwise.

• Any algorithm that would learn any FST could also learn any FSG
and, therefore, learning Finite State Transducers (FST) is at least
as hard as learning Finite State (regular) Grammars (FSG).

• Transducer Learning can be properly framed within the paradigm
of Grammatical Inference

Transducer Identification in the Limit:

Let f : X∗ → Y ∗ be a transduction function. A transducer learning algorithm
A is said to identify f in the limit if, for any positive presentation S of input-
output pairs of f , A converges to a transduction g : X∗ → Y ∗ such that ∀x ∈
Dom(f), g(x) = f(x), when the number of pairs in S tends to infinity.
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Stochastic Finite State Transducers

A Stochastic Finite State transducer T is defined by (τ, P, PF ), where:

• τ = (Q,X, Y, q0, QF , E) is a Finite State transducer

• P : E → R+ and PF : QF → R+ are functions such that:∑
(q′,u,v,q)∈E

P (q′, u, v, q) + PF (q′) = 1 ∀q′ ∈ Q

• Probability of a path, Pm, ending at the state qm:

Pr(Pm) =
∏

(q′,u,v,q)∈Pm

P (q′, u, v, q) PF (qm)

• Probability of a translation (x, y) of τ :

PT (x, y) =
∑

Pm∈P(τ,x,y)

Pr(Pm) =
∑

Pm∈P(τ,x,y)

∏
(q′,u,v,q)∈Pm

P (q′, u, v, q) PF (qm)

PT (x, y) defines a joint distribution in X∗, Y ∗
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Example of a Stochastic Finite-State Transducer

0 1"una" / "a" (0.5)

"la" / "the" (0.5)

2"camera" / "room" (0.1)

4

"camera" / "room" (0.3)

3

"camera" / "" (0.6)

"doppia" / "with two beds" (1)

"doppia" / "double room" (0.3)

"singola" / "single room" (0.7)

Pr(una camera doppia , a double room) = 0.5 · 0.6 · 0.3 = 0.09

Pr(una camera doppia , a room with two beds) = 0.5 · 0.1 · 1.0 = 0.05
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Stochastic Finite-State Transducer: another example

0 1
"una" / "a" (0.5)
"la" / "the" (0.5)

2"camera" / "" (0.1)

4"camera" / "room" (0.3)

3
"camera" / "" (0.6)

"doppia" / "room with two beds" (0.8)

"singola" / "single room" (0.2)

"doppia" / "double room" (0.3)

"singola" / "single room" (0.7)

Pr(una camera singola , a single room) =

0.5 · 0.1 · 0.2 + 0.5 · 0.6 · 0.7 = 0.01 + 0.21 = 0.22
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Stochastic Finite State Transducers: embeeded language models

The marginals of the joint probability distribution PT (x, y) defined by a
stochastic finite-state transducer T are stochastic regular languages:

Pi(x) =
∑

y∈Y ?

PT (x, y), Po(y) =
∑

x∈X?

PT (x, y).

These languages can be properly considered as input and output
Language Models corresponding to T .

In practice, these Language Models are simply the regular languages
associated to the automata obtained by dropping the input and output
symbols of each transition of the finite-state transducer, respectively.
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Stochastic Finite State Transducers: search problems

• Most probable path: given T , x ∈ X∗, y ∈ Y ∗, find

P̂ = argmax
P∈P(τ,x′,y′); x′=x, y′=y

Pr(P)

Efficient solution by Dynamic Programming

• Most probable translation: given x ∈ X∗, find

ŷ = argmax
y∈Y ∗

PT (x, y)

No efficient solution (shown to be NP-Hard!).

Approximation:

ỹ = argmax
P∈P(τ,x′,y′); x′=x, y′∈Y ∗

Pr(P)

Efficient solution by Viterbi search

Both problems are easy if τ is un-ambiguous – trivial if τ is deterministic
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Example of Viterbi translation
una camera doppia

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0.5

0.05

0.3

0.15 0.05

0.09

0 1 3 4
a "" double room

0

1

2

3

4

"una"/"a" "la"/"the"

"camera"
/

"room"
"camera"/""

"camera"
/

"room"

"doppia"
/

"with two beds"

"doppia"
/

"double room"

"singola"/"single room"

argmax
y

Pr(“una camera doppia”, y) ≈ “a double room”
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Learning Stochastic Finite State Transducers

Three main families of techniques to learn a SFST from a
parallel corpus of source-target sentences:

• Traditional syntactic pattern recognition paradigm :

– Learn the SFST “topology” (the states and transitions)
– Estimate the probabilities from the same data

Problem: The class of finite-state transducers as a whole is
at least as hard to learn as the class of finite-state automata!

⇒ Try to learn adequate subclasses and/or use heuristics!

• Hybrid methods : Under the traditional paradigm, use
statistical methods to guide the structure learning

• Pure statistical approach (new):

– Adequately parameterize the SFST structure and
consider it as a hidden variable

– Estimate everything by Expectation Maximization (EM)

E. Vidal – ITI-UPV-DSIC January 2005 Page 4.18



Pattern Recognition Machine Translation Stochastic Finite-State Transducers

Estimating probabilities of Stochastic Finite State Transducers

• Estimating transition and final-state probabilities:

– Un-ambiguous transducers:
Maximum likelihood estimation from the frequency of use of
transition and states in the paths matching the training pairs

– Ambiguous transducers:
EM re-estimation based on a forward-backward-like algorithm or
a Viterbi-like approximation [Picó & Casacuberta, 01]

• Modeling of unseen events – smoothing:

– Back-off and interpolation
Adapted from techniques used in language modeling [Llorens 01]
(so far fully developed only for techniques based on N-Grams)

– Stochastic error-correcting parsing
Given a source sentence, x, find a path in the transducer that
error-correcting matches x with maximum probability
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Error Correcting techniques: Motivation

Often needed to allow parsing unseen input sentences through learned
Finite State models that do not completely “cover” the input language:

• Can be understood as a kind of smoothing that can be applied
to most types of Finite State devices.

• Explicitly copes with “imperfect” input sentences (i.e.,
sentences inappropriately modeled by the trained models).

• Also copes with insufficiently trained models. In an extreme
view, this is similar to Memory Based techniques, where only
the (raw) training data is considered (no generalization).
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Finite State Error Correcting Parsing

• Each input sentence, x, is considered as a corrupted version of some
sentence x′ ∈ L, where L is the language (domain) of the FSM.

• The corruption process is modelled by means of an Error Model E, that
accounts for (single-word) substitutions, insertions and deletions.

• The parsing of x consists in finding a string x̂ in L which has maximum
posterior probability of having been distorted into x; that is,

x̂ = argmax
x′∈L

P (x′|x) = argmax
x′∈L

PL(x′) · PE(x|x′)

where PL(x′) is the probability of x′ in L, given by the (input part of the)
FSM, and PE(x|x′) is the probability of x being a corrupted version of x′

according to E.

The resulting translation, y′, is the string associated to x̂ through the SST.
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Finite State Error Correcting Parsing: training and search

• The parameters of PE(x|x′) are estimated from a set of “distorted”
sentences; i.e., sentences that can not be exactly parsed through
the given FST.

• If both PE(x|x′) and PL(x) are given by a Finite-State models, the
Error Correcting search

x̂ = argmax
x′∈L

PL(x′) · PE(x|x′)

can be efficiently performed through appropriate extensions of the
Viterbi Algorithm [Amengual & Vidal, PAMI-1999]
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Efficient Finite State Error Correcting Parsing

The required search can be efficiently performed
through appropriate extensions of the Viterbi Algorithm:

• For every input language word, a loop transition is added to each
state of the FSM to account for insertion-errors.

• Each transition is expanded with the appropriate substitution-error
transitions plus an empty transition to account for a deletion-error.

• The standard Viterbi trellis is extended with “horizontal” arcs for the
insertion-errors and “vertical” arcs for the deletion-errors.

• Actual expansion of the trellis is not necessary (nor generally
possible!). Virtual expansion is one of the key issues for efficiency.

• Efficient techniques can be used to process the scores in each
stage of the trellis, overcoming the trouble raised by vertical arcs
[Amengual & Vidal, PAMI-1999].
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Error Correcting Parsing: example

Grammar, equivalent Automaton and
(virtual) Error-Correcting extensions

Ins-Sub-Del-Extended trellies and
Error-Correcting Parsing process
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Not all the transduction tasks are equally difficult

1. Spanish to English, word by word

2. Division by 7

3. English to Decimal

4. Roman to Decimal

5. ATIS: English to ”Pseudo English”

6. Spanish to English

Rational or Finite-State

Subsequential

Sequential

More complex Transduction Tasks

1

3 4
2

5?
6?

THE MAIN CONCERN IS THE REQUIRED degree of “sequentiality” OR

position monotonicity BETWEEN INPUT-OUTPUT SUBSEQUENCES
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Sequential Transducers

A Sequential Transducer (ST) τ is a 5-tuple τ = (Q,X, Y, q0, E):

Q: Finite set of States
X, Y : Input and output Alphabets
q0 ∈ Q: Initial State
E ⊂ Q×X × Y ∗ ×Q: “Edges” or Transitions

• All the states are accepting

• Edges are deterministic:
(q, a, u, r), (q, a, v, s) ∈ E ⇒ (u = v ∧ r = s)

PROPERTIES:

1. Tτ is a function: X∗ → Y ∗

2. STs ≡ Generalized Sequential Machines ⊃ (Mealy and Moore machines)

3. STs preserve prefixes: Tτ(λ) = λ; Tτ(uv) ∈ Tτ(u)Y ∗

“Property” 2 entails strict sequentiality,
which can hardly be adequate in many cases of interest
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An example of Sequential Transduction;
sequential segmentation

X = {a, b}; Y = {A,B}

λ
a / A

b / B
b /

b / 
a / λ

λ
τ = 

Tτ = {(λ, λ), (aba, A), (ababbaba,ABA), (ababbababb), (ABAB), . . .}

Sequential segmentation of the input string “ababbababbaba”

a b a b b a b a b b a b a
 A    B    A    B    A 
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Learning Sequential Transducers
using language learning (GI) techniques

Segmentation

Language 
Model

Learning

Learning
Output-unit

Models

Transduction
(Dynamic Programming)

Output LM

Output-unit
Models

Bootstrapping

(x,y)     R

y    Y*

x     X*

x     X*

?

. . .

y    Y*

y1 y1y3
y6

y4 y2y7
y5
y1

y2

y1

y7

Iteration

x1 x7

x3

x5

x1
x7

x3

x1 x7

x5

x4
x3

x8
x6

yn
x6

x3 x1 x7
x9

x2

x7
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Applications of Sequential Transduction: Language Understanding
using “intermediate” semantic languages

Basic idea: Split the ingle-block transducer T into two blocks, using an
Intermidiate Semantic Language (ISL) which is sequential with the input

Transducer  T
��� � ��� �
��� ��	
 �

represented through
an appropriate ISL

meaning,Semantic

Transducer

Representation

Converter

Speech or
Text Input

ACTION

Example (Spanish numbers to Decimal)

Input: dos cientos do ce mil dieci seis
ISL: +2 ∗100 +2 +10 ) ∗ 1000 ( +10 +6

Example (From the ATIS task)

Input: I’d like to fly from Boston to Denver with American Airlines on Tuesday
ISL: REQ=FLIGHTS ORG=BBOS DST=DDEN AIRLINE=AA WEEKDAY=TU
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Subsequential Transduction
[Berstel,79]

A Subsequential Transducer (SST) τ is a 6-tuple τ = (Q,X, Y, q0, E, σ), where:

• τ ′ = (Q,X, Y, q0, E) is a Sequential Transducer

• σ : Q → Y ∗ is a state output (partial) function

• For each input string x, the output string y is obtained
by concatenating σ(q) to τ ′(x), where q is the last
state reached through the analysis of x by τ ′; i.e.:

y = τ(x) = τ ′(x)σ(q)

PROPERTIES:

1. Tτ is a function: X∗ → Y ∗

2. Sequential ⊂ Subsequential Transduction ⊂ Finite State.

3. Input-output monotonicity (sequentiality) needs not be as strict as in STs.
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Subsequential Transducers (intuitive concept)

• Deterministic Finite State Networks which accept sentences from an
input language and produce sentences of an output language.

• In addition to input symbols, output strings are assigned to the edges.

• Output strings are also assigned to final states.

• SST operation relies on “delaying” the production of output symbols
until enough of the input sentence has been seen to guarantee a correct
output.

An example of SST:

un / a triangletriangulo / λ

square
cuadrado / λ

y / triangle and

λ
grande / large triangle

y / square and
grande / large square
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Learning SSTs: the OSTI Algorithm
[Oncina, 91-93]

SSTs can be learned from training examples using the
Onward Subsequential Transducer Inference Algorithm (OSTIA) .

1. Build an “onward” tree representation of the training data (a tree in which
output strings are as close as possible to the root – called “OTST”)

Example:

(un triángulo y un cuadrado , a triangle and a square),
(un triángulo grande , a large triangle),

(un cuadrado , a square)

un / a
triangulo / λ

λcuadrado / square

λgrande / large triangle

y / triangle and a square un / λ λcuadrado / λ

2. Orderly traverse the tree, while merging states in order to get, hopefully,
adequate generalizations.
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Exemple of word alignments

taxi . . . . . ■ . . .
un . . . . ■ . . . .

pı́dame ■ ■ ■ ■ . . . . .
, . . . . . . ■ . .

favor . . . . . . . ■ .
por . . . . . . . ■ .

could
you
ask
for
a taxi
, please
?
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Segment alignment

SINGLE-WORD ALIGNMENTS: only model the correspondence between words.

Alternative:

SEGMENT ALIGNMENTS: modelling the correspondences between word segments.

[ taxi . . . . . ■ . . .
un ] . . . . ■ . . . .

[ pı́dame ] ■ ■ ■ ■ . . . . .
[ , . . . . . . ■ . .

favor . . . . . . . ■ .
por ] . . . . . . . ■ .

[could
you
ask
for

]
[a taxi]
[, please

]
[?

]
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Segment alignment

[ ? ] . . . . . . . . . ■

[ doce . . . . . . ■ . . .
las . . . . . ■ . . . .
a ] . . . . . ■ . . . .

[ despertar . . ■ . ■ . . . . .
podrı́an ■ . . . . . . . . .

nos . . . ■ . . . . . .
¿ ] ■ . . . . . . . . .
[ , . . . . . . . ■ . .

favor . . . . . . . . ■ .
por ] . . . . . . . . ■ .

[could
you
w

ake
us up

]
[at
tw

elve
]

[, please
]

[?
]
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Beyond word-based models

• The basic assumption in the current word-based models: Each source word is
generated by only one target word.

• This assumption does not correspond to the nature of natural language. In some
cases, it is necessary to know the context.

• Solutions:

– Context-dependent dictionaries (previous talk). The basic unit is the word.
– Word sequences:
∗ Alignment templates: A sequence of source (classes of) words is aligned with a

sequence of target (classes of) words. Inside the templates there are word-to-
word correspondences. The basic unit is the word.

∗ Phrase-based models: 1 A sequence of source words is aligned with a sequence
of target words. The basic unit is the phrase.

1By “phrase” we will mean a possible word sequence.
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Word sequences

[ taxi . . . . . ■ . . .
un ] . . . . ■ . . . .

[ pı́dame ] ■ ■ ■ ■ . . . . .
[ , . . . . . . ■ . .

favor . . . . . . . ■ .
por ] . . . . . . . ■ .

[could
you
ask
for

]
[a taxi]
[, please

]
[?

]

[ taxi . . . . . ■ . . .
un ] . . . . ■ . . . .

[ pı́dame ] ■ ■ ■ ■ . . . . .
[ , . . . . . . ■ . .

favor . . . . . . . ■ .
por ] . . . . . . . ■ .

[could
you
ask
for

]
[a taxi]
[, please

]
[?

]

Alignment templates Bilingual phrases
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Phrase-based models

The statistical dictionaries of single word pairs are substituted
by statistical dictionaries of bilingual phrases.

Bilingual phrases are related with a bilingual segmentation.

• Problem: The generalisation capability, since only
sequences of segments that have been seeing in the
training corpus are accepted.

• Problem: The selection of adequate bilingual phrases.
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An example

y: could you ask for a taxi , please ?

y could you ask for a taxi , please ?
i 1 2 3 4 5 6 7 8 9=I

Segmentation µ µ1 µ2 µ3

Permutation α α1 = 2 α2 = 3 α3 = 1

, please ? could you ask for a taxi

Translation x por favor , pı́dame un taxi .
j 1 2 3 4 5 6 7

Segmentation γ γα3 γα1 γα2

x: por favor , pı́dame un taxi .
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General framework

• Let K be the number of segments in x and in y,

• Segmentation of the target sentence

µ : {1, . . . ,K} → {1, . . . , I} : µk ≥ µk−1 1 < k ≤ K & µK = I (µ0 = 0)

• Segmentation of the source sentence

γ : {1, . . . ,K} → {1, . . . , J} : γk ≥ γk−1 1 < k ≤ K & γK = J (γ0 = 0)

• Segment alignment (Permutation):

α : {1, . . . ,K} → {1, . . . ,K} : α(k) = α(k′) iff k = k′
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Monotone vs. no monotone alignments

NO MONOTONE ALIGNMENT

Pr(x|y) ≈ P (x|y) = p(J |I) ·
∑
K

∑
µK

1

∑
αK

1

∑
γK
1

K∏
k=1

p(αk|αk−1) · p(x
γαk
γαk−1+1|y

µk
µk−1+1)

MONOTONE ALIGNMENT ⇒ αk = k

Pr(x|y) ≈ P (x|y) = p(J |I) ·
∑
K

∑
µK

1

∑
γK
1

K∏
k=1

p(xγk
γk−1+1|y

µk
µk−1+1)
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Maximum approaches

NO MONOTONE ALIGNMENT

Pr(x|y) ≈ P̂ (x|y) = p(J |I) ·max
K

max
µK

1

max
αK

1

max
γK
1

K∏
k=1

p(αk|αk−1) · p(x
γαk
γαk−1+1|y

µk
µk−1+1)

MONOTONE ALIGNMENT ⇒ αk = k

Pr(x|y) ≈ P̂ (x|y) = p(J |I) ·max
K

max
µK

1

max
γK
1

K∏
k=1

p(xγk
γk−1+1|y

µk
µk−1+1)
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Formal derivation (I)

ŷ = argmax
y

Pr(y|x) = argmax
y

Pr(y) · Pr(x|y)

Pr(x | yI
1) = Pr(J | yI

1) · Pr(x | yI
1, J)

= Pr(J | yI
1) ·
∑
K

Pr(K | yI
1, J) · Pr(x | yI

1, J,K)

Segmentation of target sentences

µ : {1, . . . ,K} → {1, . . . , I} : µk ≥ µk−1 1 < k ≤ K & µK = I (µ0 = 0)

y
=I

1 4=K2 3

µ  2µ  1 µ  3 µ  4

Pr(x | yI
1) = Pr(J | yI

1) ·
∑
K

Pr(K | yI
1, J) ·

∑
µK

1

Pr(xJ
1 , µK

1 | yI
1, J,K)
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An example (I)

x: por favor , pı́dame un taxi

y: could you ask for a taxi , please ?

y could you ask for a taxi , please ?
1 1 2 3 4 5 6 7 8 9=I

Number of segments in y: K = 3

Segmentation of y: µ

y could you ask for a taxi , please ?
i 1 2 3 4 5 6 7 8 9=I
µ µ1 µ2 µ3
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Formal derivation (II)

Pr(x | yI
1) = Pr(J | yI

1) ·
∑
K

∑
µK

1

Pr(K | yI
1, J) · Pr(µK

1 | yI
1, J,K) · Pr(xJ

1 | yI
1, J,K, µK

1 )

Permutation of target segments:

α : {1, . . . ,K} → {1, . . . ,K} : α(k) = α(k′) iff k = k′

Pr(xJ
1 | yI

1, J,K, µK
1 ) =

∑
αK

1

Pr(xJ
1 , αK

1 | yI
1, J,K, µK

1 )

=
∑
αK

1

Pr(αK
1 | yI

1, J,K, µK
1 ) · Pr(xJ

1 | yI
1, J,K, µK

1 , αK
1 )

y
=I

1 2

µ    2µ  1 µ 3 µ  4

2 1 43

α
3 4
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An example (II)

x: por favor , pı́dame un taxi

y: could you ask for a taxi , please ?

Segmentation of y: µ

y could you ask for a taxi , please ?
i 1 2 3 4 5 6 7 8 9=I
µ µ1 µ2 µ3

α α1 = 2 α2 = 3 α3 = 1

Permutation of segments in y: α

y , please ? could you ask for a taxi
i 7 8 9 1 2 3 4 5 6

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 5: 17



Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Formal derivation (III)
Segmentation of source segments:

γ : {1, . . . ,K} → {1, . . . , J} : γk ≥ γk−1 1 < k ≤ K & γK = J (γ0 = 0)

Pr(xJ
1 | yI

1, J,K, µK
1 , αK

1 ) =
∑
γK
1

Pr(xJ
1 , γK

1 | yI
1, J,K, µK

1 , αK
1 )

=
∑
γK
1

Pr(γK
1 | yI

1, J,K, µK
1 αK

1 ) · Pr(xJ
1 | yI

1, J,K, µK
1 , αK

1 , γK
1 )

s
1 2 3 4

γ  1 γ  2 γ  3 γ  4 =J

t
=I

1 2

µ  2µ  1 µ  3 µ  4

1 43

α
3 4

2
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An example (III)
x: por favor , pı́dame un taxi y: could you ask for a taxi , please ?

Segmentation of y: µ

y could you ask for a taxi , please ?
i 1 2 3 4 5 6 7 8 9=I
µ µ1 µ2 µ3

α α1 = 2 α2 = 3 α3 = 1

Permutation of segments in y: α

y , please ? could you ask for a taxi
i 7 8 9 1 2 3 4 5 6

Segmentation of x: γ

j 1 2 3 4 5 6=J
γ γ1 γ2 γ3

Segments of x

x por favor , pı́dame un taxi
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Summary

Pr(x|yI
1) = Pr(J | yI

1) ·
∑
K

∑
µK

1

∑
αK

1

∑
γK
1

Pr(K | yI
1, J) · Pr(µK

1 | yI
1, J,K) ·

Pr(αK
1 | yI

1, J,K, µK
1 ) · Pr(γK

1 | yI
1, J,K, µK

1 , αK
1 ) · Pr(xJ

1 | yI
1, J,K, µK

1 , αK
1 , γK

1 )

Pr(µ
K
1 | yI

1, J, K) =

KY
k=1

Pr(µk | yI
1, J, K, µ

k−1
1 )

Pr(α
K
1 | yI

1, J, K, µ
K
1 ) =

KY
k=1

Pr(αk | yI
1, J, K, µ

K
1 , α

k−1
1 )

Pr(γ
K
1 | yI

1, J, K, µ
K
1 , α

K
1 ) =

KY
k=1

Pr(γαk
| yI

1, J, K, µ
K
1 , α

K
1 , γα1

, . . . , γαk−1
)

Pr(xJ
1 | yI

1, J, K, µ
K
1 , α

K
1 , γ

K
1 ) =

KY
k=1

Pr(x
γαk
γαk−1+1|y

I
1, J, K, µ

K
1 , α

K
1 , γ

K
1 , x

γα1
γα1−1+1, . . . , x

γαk−1
γαk−1−1+1)
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An approach

Pr(J | yI
1) ≈ p(J |I)

Pr(K | yI
1, J) ≈ p(K|I, J)

Pr(µk | yI
1, J,K, µk−1

1 ) ≈ p(µk|I)

Pr(αk | yI
1, J,K, µK

1 , αk−1
1 ) ≈ p(αk|αk−1)

Pr(γαk
| yI

1, J,K, µK
1 , αK

1 , γα1, . . . , γαk−1
) ≈ p(γαk

|I)

Pr(x
γαk
γαk−1+1|yI

1, J,K, µK
1 , αK

1 , γK
1 , x

γα1
γα1−1+1, . . . , x

γαk−1
γαk−1−1+1) ≈ p(x

γαk
γαk−1+1|y

µk
µk−1+1)
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Another approach

Pr(J | yI
1) ≈ p(J |I)

Pr(K | yI
1, J) ≈ p(K|I, J)

Pr(µk | yI
1, J,K, µk−1

1 ) ≈ p(µk|I, µk−1)

Pr(αk | yI
1, J,K, µK

1 , αk−1
1 ) ≈ p(αk|αk−1)

Pr(γαk
| yI

1, J,K, µK
1 , αK

1 , γα1, . . . , γαk−1
) ≈ p(γαk

|J, µk, γαk−1
)

Pr(x
γαk
γαk−1+1|yI

1, J,K, µK
1 , αK

1 , γK
1 , x

γα1
γα1−1+1, . . . , x

γαk−1
γαk−1−1+1) ≈ p(x

γαk
γαk−1+1|y

µk
µk−1+1)
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An extra approach

Pr(J | yI
1) ≈ p(J |I)

Pr(K | yI
1, J) ≈ p(K|I, J)

Pr(µk | yI
1, J,K, µk−1

1 ) ≈ p(µk|I, yµk−1, yµk
)

Pr(αk | yI
1, J,K, µK

1 , αk−1
1 ) ≈ p(αk|αk−1)

Pr(γαk
| yI

1, J,K, µK
1 , αK

1 , γα1, . . . , γαk−1
) ≈

p(γαk
, xγαk

−1, xγαk
)∑

s,s′ p(γαk
, s, s′)

Pr(x
γαk
γαk−1+1|yI

1, J,K, µK
1 , αK

1 , γK
1 , x

γα1
γα1−1+1, . . . , x

γαk−1
γαk−1−1+1) ≈ p(x

γαk
γαk−1+1|y

µk
µk−1+1)
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Encore un plus

Pr(J | yI
1) ≈ p(J|I)

Pr(K | yI
1, J) ≈ p(K|I, J)

Pr(µk | yI
1, J, K, µ

k−1
1 ) ≈ p(µk|I, µk−1, y

µk−1
µk−2+1)

Pr(αk | yI
1, J, K, µ

K
1 , α

k−1
1 ) ≈ p(αk|k, K) ·

kY
l=1

(1 − δ(αk, αl))

Pr(γαk
| yI

1, J, K, µ
K
1 , α

K
1 , γα1

, . . . , γαk−1
) ≈ p(γαk

− γαk−1
|K, µk − µk−1)

Pr(x
γαk
γαk−1+1|y

I
1, J, K, µ

K
1 , α

K
1 , γ

K
1 , x

γα1
γα1−1+1, . . . , x

γαk−1
γαk−1−1+1) ≈ p(x

γαk
γαk−1+1|y

µk
µk−1+1)
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Monotone vs. no monotone alignments (I)

NO MONOTONE ALIGNMENT

Pr(x|yI
1) ≈ P (x|yI

1) = p(J |I) ·
∑
K

∑
µK

1

∑
αK

1

∑
γK
1

p(K|I, J)·

K∏
k=1

p(µk|I) · p(αk|αk−1) · p(γαk
|I) · p(x

γαk
γαk−1+1|y

µk
µk−1+1)

MONOTONE ALIGNMENT ⇒ αk = k

Pr(x|yI
1) ≈ P (x|yI

1) = p(J |I)·
∑
K

∑
µK

1

∑
γK
1

p(K|I, J)·
K∏

k=1

p(µk|I)·p(γk|J)·p(xγk
γk−1+1|y

µk
µk−1+1)
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Monotone vs. no monotone alignments (II)

NO MONOTONE ALIGNMENT

Pr(x|yI
1) ≈ P (x|yI

1) = p(J |I) ·
∑
K

∑
µK

1

∑
αK

1

∑
γK
1

p(K|I, J) ·
K∏

k=1

p(µk|I, µk−1, y
µk−1
µk−2+1)·

p(αk|αk−1, k, K) · p(x
γαk
γαk−1+1 | yµk

µk−1+1) ·
k∏

l=1

(1− δ(αk, αl)) · p(γαk
− γαk−1

| K, µk − µk−1)

MONOTONE ALIGNMENT ⇒ αk = k

Pr(x | yI
1) ≈ P (x | yI

1) = p(J | I) ·
∑
K

∑
µK

1

∑
γK
1

p(K | I, J)·

K∏
k=1

p(µk | I, µk−1, y
µk−1
µk−2+1) · p(xγk

γk−1+1 | yµk
µk−1+1) ·

k∏
l=1

p(γk − γk−1 | K, µk − µk−1)
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Monotone phrase-based models

• Uniform distributions are asumed for p(J | I), p(K | I, J), p(µk | I) and p(γk | J),

P (x | yI
1) ∝

∑
K

∑
µK

1

∑
γK
1

K∏
k=1

p(xγk
γk−1+1 | yµk

µk−1+1)

• The sums are approximate by maximizations.

P (x | yI
1) ≈∝ max

K
max
µK

1

max
γK
1

K∏
k=1

p(xγk
γk−1+1 | yµk

µk−1+1)
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Learning phrase-based models

• Models

– Learning monotone phrase-based models
– Learning nomonotone phrase-based models

• Phrase-based units

– Training with a sentence-aligned corpus.
– Training with a word-aligned corpus.
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Learning monotone phrase-based models ∗

Training with a sentence-aligned corpus.

Given a sentence-aligned corpus T of pairs of sentences (x, y), the maximum
likelihood criterium tries to estimate the parameters p(x̃ | ỹ) that maximize:∏

(x,y)∈T

P (x | y)

subject to:
∑

x̃

p(x̃ | ỹ) = 1 for each target segment ỹ

By applying an EM procedure:

p(x̃ | ỹ) = λỹ·
∑

(x,y)∈T

∑
K,µK

1 ,γK
1

(
K∏

k=1

p(xγk
γk−1+1 | yµk

µk−1+1) ·
K∑

l=1

δ(x̃ = xγl
γl−1+1) · δ(ỹ = yµl

µl−1+1)

)

where λey is a normalization factor and δ: δ(true) = 1 y δ(false) = 0.

∗The slides on phrase-based models are modified versions of some material supplied by Jesús Tomás.
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Learning monotone phrase-based models
Training with a word-aligned corpus.

Given a sentence-aligned corpus T ,

• A word-aligned corpus is generated using the GIZA++ toolkit with T

http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/GIZA++.html

• A set of bilingual word sequences from the word aligned corpus is extracted.

• The parameters of the phrase-model are estimated.
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Learning monotone phrase-based models
Extracting bilingual word sequences.

For each x, y ∈ T , aligned by a,

BP1(x, y, a) =
{

(xj2
j1

, yi2
i1
) :

∀j : j1 ≤ j ≤ j2;∃i : i1 ≤ i ≤ i2 : a(j) = i
∀i : i1 ≤ i ≤ i2;∃j : j1 ≤ j ≤ j2 : a(j) = i

}

BP2(x, y, a) =
{

(xj2
j1

, yi2
i1
) :

∀j : j1 ≤ j ≤ j2; (i1 ≤ a(j) ≤ i2) ∨ (a(j) = 0)
∀j : (j < j1) ∨ (j2 < j): (a(j) < i1) ∨ (i2 < a(j))

}

BP3(x, y, a) =
{

(xj2
j1

, yi2
i1
) :

∀j : j1 ≤ j ≤ j2; (i1 ≤ ax,y(j) ≤ i2) ∨ (a(j) = 0)
∀j : j < j1; ax,y(j) < i1 ∀j : j > j2; a(j) > i2

}
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Learning monotone phrase-based models

Extracting bilingual multiword sequences: an example

x: configuration program
``````

        

y: programa de configuración

a: 2 0 1

• BP1={configuration-configuración, program-programa}

• BP2={configuration-configuración, program-programa,
configuration-de configuración, program-programa de,
configuration program-programa de configuración}

• BP3={configuration program-programa de configuración}
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Learning monotone phrase-based models
Estimating the parameters.

By relative frequencies, for each pair of segments (x, y):

p(x̃ | ỹ) =
N(x̃, ỹ)
N(ỹ)

where N(ỹ) denotes the number of times that phrase ỹ has appeared, and N(x̃, ỹ) is
the number of times that the bilingual phrase (x̃, ỹ) has appeared.

A refinement: the combination of the method based on a sentence-aligned corpus and
one of the techniques for the bilingual multiword sequences:

p(x̃ | ỹ) = λỹ ·
∑

(x,y)∈T

pI ·
∑

K,µK
1 ,γK

1

(
K∏

k=1

p(xγk
γk−1+1 | yµk

µk−1+1) ·

K∑
l=1

δ(x̃ = xγl
γl−1+1) · δ(ỹ = yµl

µl−1+1) · δ((x̃, ỹ) ∈ BP (T ))

)
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Learning no-monotone phrase-based models

• The procedures for estimating the models parameterrs are similar to the ones for
monotone models.

• For the distortion model, p(αk | αk−1)∗:

p(αk | αk−1) = p
|γαk

−γαk−1
|

0 ,

where p0 is a parameter to be ajusted using a validation set.

( F.Och, H. Ney The Alignment Template Approach to Statistical Machine Translation. Computational Linguistics, 30(4), 2004.

)
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Search algorithms for monotone phrase-based models

• Basic idea is to generate partial hypothesis about the target sentence in an
incremental way.

• Each of these hypothesis is composed by a prefix of the target sentence, a subset of
source positions that have been aligned with the positions of the prefix of the target
sentence and a score.

• New hypothesis can be generated for a previous hypothesis by adding a target word
to the prefix of the target sentence that is the translation of a source(s) word(s) that is
(are) not translated yet.

The adopted search algorithm for phrase-based models is the multi-stack-
decoding algorithm.

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 5: 35



Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Search algorithms for monotone phrase-based models

Given a source sentence x, a hypothesis is a tuple(
xj
1, yi

1, S(xj
1, yi

1) = P (yi
1) · P (xj

1 | yi
1)
)

where

P (yi
1) =

i∏
i′=1

p(yi′ | yi′−1
i′−n+1)

and

P (xj
1 | yi

1) = max
K

max
µK

1

max
γK
1

K∏
k=1

p(xγk
γk−1+1 | yµk

µk−1+1)

with γk = j and µk = i
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Search algorithms for monotone phrase-based models

• The initialization consists on building a hypothesis for the empty target and
empty source prefixes and a score of 1.0.

• The algorithm selects a hypothesis (xj
1, yi

1, S(xj
1, yi

1)) of each stack and for
each bilingual segment (x̃, ỹ) with xj+|ex|

j+1 ≡ x̃, a new hypothesis is created
(xj

1x̃, yi
1ỹ, S(xj

1x̃, yi
1ỹ))

S(xj
1x̃, yi

1ỹ) = S(xj
1, yi

1) ·
i+| ỹ |∏
l=i+1

p(yl | yl−1
l−n+1) · p(x̃ | ỹ) (1)

Each new hypothesis, (xj
1x̃, yi

1ỹ, S(xj
1x̃, yi

1ỹ)) will be stored in the stack
associated to the source prefixes of length j + | x̃ |.
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Search algorithms for no-monotone search algorithm.

• The procedure is quite simmilar to the monotone search algorithm,

• A hypothesis consists on a prefix of the target sentence, a subset of source
positions and a score with the partial contributions of the target language model
and translation model.

• The implementation requieres a stack for each possible subset of source
positions and consequently, the computational cost can be very high.
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Experimental results

Corpora

“El Periódico” : From a bilingual newspaper (Spanish to Catalan)

Spanish Catalan
Train: Sentence pairs 643,961

Running words (Kwords) 7,180 7,435
Vocabulary (Kwords) 129 128

Test: Sentences 240
Running words 4,316 4,389
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Experimental results

Corpora

XRCE : From Xerox printer manuals (English to and from Spanish, French and German)

En Sp En Ge En Fr
Train:Sentence pairs 56K 49K 53K

Runnig words 665K 753K 633K 696K 587K 534K
Vocabulary 8K 11K 8K 10K 8K 19K

Test: Sentence pairs 1,125 984 996
Running words 8K 10K 11K 12K 12K 12K
Test perplexity 48 33 51 87 73 52
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Experimental results

Corpora

EU: Bulletin of the European Union (English to and from Spanish, French and German)

En Sp En Ge En Fr
Train:Sentence pairs 214K 223K 215K

Runnig words 5.9M 6.6M 6.5M 6.1M 6.0M 6.6M
Vocabulary 84K 97K 87K 152K 85K 91K

Test: Sentence pairs 800 800 800
Running words 2K 25K 22K 21K 22K 24K
Test perplexity 47 39 47 71 48 38
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Experimental results

Corpora

Hansards: Proceedings of Canadian Paraliament (French to English)

English French
Train: Sentence pairs 137,381

Running words (Kwords) 1,941 2,130
Vocabulary (Kwords) 29.5 37.5

Test: Sentences 250
Running words 2,633 2,805
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Assessment

• Word error rate (WER): The minimum number of substitution, insertion and deletion
operations needed to convert the word string hypothesized by the translation system
into a given single reference word string.

• Multi reference WER (mWER): Similar to WER, but for each source test sentence
there are more than one target sentences as references.

• BiLingual Evaluation Understudy (BLEU): it is based on the n-grams of the
hypothesized translation that occur in the reference translations. The BLEU metric
ranges from 0.0 (worst score) to 1.0 (best score).
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Effect of the size of the segment length (MSL)
“El Periódico” task.

MSL 2 3 4
WER 12.1 10.6 10.5
Parameters 2.0M 7.0M 14,5M

XRCE task.

MSL 2 4 6 8 10 12 14 16

English to WER 50.6 36.6 29.5 27.4 26.1 25.6 25.4 25.4
Spanish Params. 0.1M 0.4M 0.8M 1,1M 1,4M 1,6M 1,8M 1,9M

Spanish to WER 48.1 35.2 29.9 28.2 27.6 27.5 27.3 27.2
English Params. 0,1M 0.5M 0.9M 1,3M 1,6M 1,8M 2.0M 2,2M
English to WER 59.0 55.9 54.7 54.2 54.2 54.2 54.0 53.9
French Params. 0.1M 0.5M 0.8M 1,0M 1,3M 1,5M 1,6M 1,8M

French to WER 52.8 52,3 52.9 52,8 52.9 52.7 52.6 52.3
English Params. 0.1M 0.5M 0.9M 1,2M 1,4M 1,6M 1,8M 1,9M
English to WER 68.5 66.0 65.8 65.5 65.1 65.1 65.0 64.8
German Params. 0.1M 0.5M 0.8M 1.0M 1.3M 1.4M 1.5M 1.6M

German to WER 59.7 56.5 55.2 54.5 54.2 54.2 54.0 54.0
English Params. 0.1M 0.4M 0.7M 0.8M 1.0M 1.1M 1.2M 1.3M
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Some results

Different methods for building segments. XRCE task.

Procedure En-Es Es-En En-Fr Fr-En En-De De-En
BP1 45.7 28.6 54.2 52.4 65.1 55.6
BP2 26.4 27.4 53.6 52.2 64.1 54.3
BP3 25.4 27.3 54.0 52.5 64.9 53.9

Monotone vs. non monotone search. XRCE task.

Search En-Es Es-En En-Fr Fr-En En-De De-En
Monotone 28.5 30.9 51.4 51.6 66.4 54.1
No monotone 28.0 31.6 52.0 51.3 66.4 54.0

Effect of the training set on the system performance. “El Periódico” task.

Corpus size 5K 10K 20K 40K 80K 160K 320K 640K
WER 20.3 17.3 15.2 13.4 12.4 11.7 11.1 10.7
Parameters 0.1 0.2M 0.4M 0.7M 1.2M 2.1M 3.6M 7.0M
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Comparison with other machine translation systems.
“El Periódico” task.

• Salt a knowledge-based machine translation systems supported by the Government
of the Generalitat Valenciana (http://www.cultgva.es).

• Incyta , a knowledge-based commercial systems (http://www.incyta.com).

• InterNOSTRUM , a hybrid knowledge-based and finite-state translation system
(http://www.internostrum.com).

MT system WER (%) mWER (%) BLEU
Salt 9.9 6.6 0.866
Incyta 10.0 7.6 0.855
Phrase-based 10.7 7.8 0.857
InterNOSTRUM 11.9 8.5 0.837

Finaly, a simple experiment was carried out with the HANSARD task. The result
obtained was 64.9% of WER.
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Alignment templates
( H.Ney. Stochastic modelling: from pattern recognition to language translation. VIII SNRFAI. 1999. )
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Alignment templates
( H. Ney, Statistical Natural Language Processing, STC Doctorate Program, UPC. 2003 )

[ ? ] . . . . . . . . . ■

[ doce . . . . . . ■ . . .
las . . . . . ■ . . . .
a ] . . . . . ■ . . . .

[ despertar . . ■ . ■ . . . . .
podrı́an ■ . . . . . . . . .

nos . . . ■ . . . . . .
¿ ] ■ . . . . . . . . .
[ , . . . . . . . ■ . .

favor . . . . . . . . ■ .
por ] . . . . . . . . ■ .

[could
you
w

ake
us up

]
[at
tw

elve
]

[, please
]

[?
]
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Alignment templates
( H. Ney et al. Algorithms for statistical translation of spoken language. IEEE TSAP. 2000. )

• Let K be the number of segments in x and in y,

• Segmentation of the target sentence

µ : {1, . . . ,K} → {1, . . . , I} : µk ≥ µk−1 1 < k ≤ K & µK = I (µ0 = 0)

yI
1 ⇒ ỹK

1 ; ỹk ≡ yµk
µk−1+1 = yµk−1+1, ..., yµk

; 1 ≤ k ≤ K

• Segmentation of the source sentence

γ : {1, . . . ,K} → {1, . . . , J} : γk ≥ γk−1 1 < k ≤ K & γK = J (γ0 = 0)

xJ
1 ⇒ x̃K

1 ; x̃k ≡ xγk
γk−1+1 = xγk−1+1, ..., xγk

; 1 ≤ k ≤ K

• Segment alignment (Permutation):

α : {1, . . . ,K} → {1, . . . ,K} : α(k) = α(k′) iff k = k′
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Alignment templates

ALIGNMENT BETWEEN WORD GROUPS

Pr(x̃ | ỹ) =
∑
α

Pr(α, x̃ | ỹ) ≈
∑
α

K∏
k=1

p(αk | αk−1) · P (x̃k | ỹαk
)

ALIGNMENT WITHIN WORD GROUPS

P (x̃k | ỹl) =
∑
z

p(z | ỹl) · p(x̃k | z, ỹl)

An ALIGNMENT TEMPLATE z is
a binary matrix with I ′ rows and
J ′ columns: zi,j = 1 if the pair
yi and xj are aligned.

[ despertar . . ■ . ■
podrı́an ■ . . . .

nos . . . ■ .
¿ ] ■ . . . .

[could
you
w

ake
us up

]

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 5: 51



Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Alignment templates
( H. Ney et al. Algorithms for statistical translation of spoken language. IEEE TSAP. 2000. )

P (x̃k | ỹl) ≈
∑
z

p(z | ỹl) ·
J ′∏

j=1

I′∑
i=1

a(i | j, z) · l(x̃kj
| ỹli

)

=
∑
z

p(z | ỹl) ·
J ′∏

j=1

I′∑
i=1

zij∑
i′

zi′j

· l(x̃kj
| ỹli

)
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Alignment templates: training and search
( H. Ney et al. Algorithms for statistical translation of spoken language. IEEE TSAP. 2000. )

• Training:

– Viterbi alignment x → y and y → x.
– Obtaining all template templates by considering all possible

source-target word groups under the constraint that the words
within the source/target word group are only aligned to words
within the target/source word group.

• Translation:

– Computing all possible segmentations of the source sentence
into word groups.

– Computing all possible alignments between word groups.
– Computing all possible word alignments within the word group.
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Results
( EUTRANS consortium Example-Based Language Translation Systems. Final Report. Deliverable D0.1c. 2000. )

EuTrans-I corpus (Spanish-English)

• Vocabulary: 680 Spanish words, and 513 English words.

• Training: 10,000 pairs (97,000/99,000 words).

• Test: 2,996 pairs (PP=3.3) (35,000/35,590 words).

Model WER
Alignment templates (with manual categories) 2.5

Quasi-Monotone search 10.8
DP-search M2 13.9
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Results
( EUTRANS consortium Example-Based Language Translation Systems. Final Report. Deliverable D0.1c. 2000. )

FUB corpus (Italian-English)

• Vocabulary: 2,458 Italian words, and 1,701 English words.

• Training: 3,338 pairs (61,423/72,689 words).

• Test: 278 pairs (PP=31).

Model WER
Alignment templates 23.8

Monotone search 29.3
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Results
( H. Ney et al. Algorithms for statistical translation of spoken language. IEEE TSAP. 2000. )

Vermobil corpus (German-English)

• Vocabulary: 5,936 German words, and 3,505 English words.

• Training: 30,556 pairs (329,000/343,000 words).

• Test: 47 pairs (PP=43.7) (701/792 words).

Model WER
Alignment templates 28.8

Inverted search 41.0
Monotone search 36.5
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Results
( H. Ney, Statistical Natural Language Processing, STC Doctorate Program, UPC. 2003 )

Vermobil corpus (German-English)

• Vocabulary: 7,940 German words, and 4,673 English words.

• Training: 58,332 pairs (519,523/549,921 words).

• Test: 5,069 (German → English) and 4,136 (English → German) sentences.

Model SER
Semantic Transfer 62
Dialog Act Based 60
Example Based 51

Statistical 29
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Joint distributions (I)

ŷ = argmax
y

Pr(y | x) = argmax
y

Pr(x, y)

Assuming monotone constraints:

Pr(x, y) = Pr(J, I) · Pr(xJ
1 , yI

1 | J, I)

= Pr(J, I) ·
∑
K

Pr(K | J, I) · Pr(xJ
1 , yI

1 | J, I, K)

= Pr(J, I) ·
∑
K

Pr(K | J, I) ·
∑

γK
1 ,µK

1

Pr(xJ
1 , yI

1, γ
K
1 , µK

1 | J, I,K)

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 5: 59



Pattern Recognition approaches to Machine Translation Statistical Alignment Models

Joint distributions (II)

Pr(x, y) = Pr(J, I) ·
∑
K

Pr(K | J, I) ·
∑

γK
1 ,µK

1

Pr(xJ
1 , yI

1, γ
K
1 , µK

1 | J, I, K)

= Pr(J, I) ·
∑
K

Pr(K | J, I) ·
∑

γK
1 ,µK

1

Pr(γK
1 , µK

1 | J, I,K) · Pr(xJ
1 , yI

1 | J, I, K, γK
1 , µK

1 )

= Pr(J, I) ·
∑
K

Pr(K | J, I) ·
∑

γK
1 ,µK

1

K∏
k=1

Pr(γk, µk | J, I,K, γk−1
1 , µk−1

1 ) ·

Pr(xγk
γk−1+1, yµk

µk−1+1 | J, I,K, x
γk−1
1 , y

µk−1
1 , γK

1 , µK
1 )
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Joint distributions (III)

Pr(xJ
1 , yI

1, γ
K
1 , µK

1 | J, I,K) =
K∏

k=1

Pr(γk, µk | J, I,K, γk−1
1 , µk−1

1 ) ·

Pr(xγk
γk−1+1, yµk

µk−1+1 | J, I,K, x
γk−1
1 , y

µk−1
1 , γK

1 , µK
1 )

Assuming,

• Pr(γk, µk | J, I,K, γk−1
1 , µk−1

1 ) ≈ ρ

• Pr(xγk
γk−1+1, yµk

µk−1+1 | J, I,K, x
γk−1
1 , y

µk−1
1 , γK

1 , µK
1 ) ≈ Pr(xγk

γk−1+1, yµk
µk−1+1 | x

γk−1
1 , y

µk−1
1 )

Pr(xJ
1 , yI

1, γ
K
1 , µK

1 | J, I,K) ≈ ρ ·
K∏

k=1

Pr(xγk
γk−1+1, yµk

µk−1+1 | x
γk−1
1 , y

µk−1
1 )

Assuming n-grams,

Pr(xJ
1 , yI

1, γ
K
1 , µK

1 | J, I,K) ≈ ρ ·
K∏

k=1

Pr(xγk
γk−1+1, yµk

µk−1+1 | x
γk−1
γk−n+1, y

µk−1
µk−n+1)
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An example (IV)

x: he hecho una reserva de una habitación doble .

y: I have made a reservation of a double room .

The lengths of x and y

x he hecho una reserva de una habitación doble .
j 1 2 3 4 5 6 7 8 9=J

y I have made a reservation of a double room .
i 1 2 3 4 5 6 7 8 9 10=I

Number of segments: K = 3
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An example (V)
x: he hecho una reserva de una habitación doble .

y: I have made a reservation of a double room .

Segmentation of x and y

x he hecho una reserva de una habitación doble .
j 1 2 3 4 5 6 7 8 9=J
γ γ1 γ2 γ3

y I have made a reservation of a double room .
i 1 2 3 4 5 6 7 8 9 10=I
µ µ1 µ2 µ3

Phrases of x and y

x he hecho una reserva de una habitación doble .

y I have made a reservation of a double room .
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Joint distributions (IV)

Pr(xJ
1 , yI

1 | J, I) ≈ ρ ·
∑
K

Pr(K | J, I) ·
∑

γK
1 ,µK

1

K∏
k=1

Pr(xγk
γk−1+1, yµk

µk−1+1 | x
γk−1
γk−n+1, y

µk−1
µk−n+1)

≈ ρ ·max
K

Pr(K | J, I) · max
γK
1 ,µK

1

K∏
k=1

Pr(xγk
γk−1+1, yµk

µk−1+1 | x
γk−1
γk−n+1, y

µk−1
µk−n+1)

A simple case: GIATI (L1): K = J , γj = j and the target segments can be empty

Remark: There can be test segmentations that are not in the training corpus!

Possible smoothings:

Pr(xγk
γk−1+1, yµk

µk−1+1 | x
γk−1
γk−n+1, y

µk−1
µk−n+1) =


Pr(xγk

γk−1+1, yµk
µk−1+1 | −, y

µk−1
µk−n+1)

Pr(xγk
γk−1+1, yµk

µk−1+1 | x
γk−1
γk−n+1,−)

Pr(xγk
γk−1+1, yµk

µk−1+1 | −,−)
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Joint distributions and HMMs

Pr(xJ
1 , yI

1 | J, I) ≈ ρ′ ·
∑

K,γK
1 ,µK

1

K∏
k=1

Pr(xγk
γk−1+1, yµk

µk−1+1 | x
γk−1
1 , y

µk−1
1 )

= ρ′ ·
∑

K,γK
1 ,µK

1

K∏
k=1

Pr(yµk
µk−1+1 | x

γk−1
1 , y

µk−1
1 ) · Pr(xγk

γk−1+1 | x
γk−1
1 , yµk

1 )

Pr(yµk
µk−1+1 | x

γk−1
1 , y

µk−1
1 ) ≈ Pr(yµk

µk−1+1 | y
µk−1
1 ) ≈

µk∏
l=µk−1+1

Pr(yl | yl
l−n+1)

Pr(xγk
γk−1+1 | x

γk−1
1 , yµk

1 ) ≈ Pr(xγk
γk−1+1 | yµk

µk−1+1)

Pr(xJ
1 , yI

1 | J, I) ≈ ρ′ ·
∑

K,γK
1 ,µK

1

K∏
k=1

Pr(xγk
γk−1+1 | yµk

µk−1+1) ·
µk∏

l=µk−1+1

Pr(yl | yl
l−n+1)
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Chunking in statistical machine translation

Koehn and Knight. ChunkMT: Statistical machine translation with richer linguistic knowledge. Draft, Unpublished. 2002.

1. Chunking the source sentence: generating sequence of chunks (with the
corresponding source POS)

2. Reordering the source chunks.

3. Chunk mapping: generating the target POS of each chunk

4. Word translations: generating the target words.

Marginal improvements on a corpus of the European Parliament proceedings
(German to English)
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Bilingual chunking in statistical machine translation

Wang, Zhou, Huang and Huang. Structure alignment using bilingual chunking. 17th International Conference on Computational Linguistics, 2002.

argmax
σ,τ,α

Pr(y, σ, τ , α | x)

• σ = sequence of source chunks;

• τ = sequence of target chunks;

• α = alignment between chunks.

By introducing POS tagging of the souce sentence πx and POS tagging of the target
sentence πy

argmax
σ,τ,α,πy,πx

Pr(πx | x) · Pr(σ | πx, x) · Pr(πy | σ, πx, x)

·Pr(y | πy, σ, πx, x) · Pr(τ | y, πy, σ, πx, x) · Pr(α | τ , y, πy, σ, πx, x)
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Bilingual chunking in statistical machine translation

Wang, Zhou, Huang and Huang. Structure alignment using bilingual chunking. 17th International Conference on Computational Linguistics, 2002.

argmax
σ,τ,α,πy,πx

Pr(πx | x) · Pr(σ | πx, x) · Pr(πy | σ, πx, x)

·Pr(y | πy, σ, πx, x) · Pr(τ | y, πy, σ, πx, x) · Pr(α | τ , y, πy, σ, πx, x)

• Pr(πx | x): POS tagging of source sentence

• Pr(σ | πx, x): chunking the source sentence

• Pr(πy | σ, πx, x): target POS taggs.

• Pr(y | πy, σ, πx, x): target words.

• Pr(τ | y, πy, σ, πx, x): target chunks.

• Pr(α | τ , y, πy, σ, πx, x): alignment between chunks.

Only results on chunk alignments.
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Parsing in statistical machine translation

Charniak, Knight and Yamada. Syntax-based Language Models for Machine Translation. MT Summit IX. 2003

Pr(y | x) =
∑
πy

Pr(y, πy) · Pr(x | y, πy) =
∑
πy

Pr(πy) · Pr(x | πy)

πy is a parse tree of the target sentence y

Three operations for Pr(x | πy):

• Reordering some the child nodes

• Inserting optional words

• Translating each target word by the corresponding source
word

Some improvements on a Chinese to English newspaper task.
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Other approaches

• Wang and Waibel. Modeling with structures in statistical machine translation. 17th
Int. Conf. on Computational Linguistics Montreal, (Coling) 1998.
Shallow parsing to define structures to be aligned.

• Wang, Zhou, Huang and Huang. Structure alignment using bilingual chunking. 17th
International Conference of Computational Linguistics (COLING) 2002.

• Koehn and Knight, 2003. Feature-rich statistical translation of noun phrases. 41nd
Annual Meeting of the ACL 2003.
A subsystem for translating noun phrases.
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Sequential Transducers

A Sequential Transducer (ST) τ is a 5-tuple τ = (Q,X, Y, q0, E):

Q: Finite set of States
X, Y : Input and output Alphabets
q0 ∈ Q: Initial State
E ⊂ Q×X × Y ∗ ×Q: “Edges” or Transitions

• All the states are accepting

• Edges are deterministic:
(q, a, u, r), (q, a, v, s) ∈ E ⇒ (u = v ∧ r = s)

PROPERTIES:

1. Tτ is a function: X∗ → Y ∗

2. STs ≡ Generalized Sequential Machines ⊃ (Mealy and Moore machines)

3. STs preserve prefixes: Tτ(λ) = λ; Tτ(uv) ∈ Tτ(u)Y ∗

“Property” 2 entails strict sequentiality,
which can hardly be adequate in many cases of interest
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Subsequential Transduction
[Berstel,79]

A Subsequential Transducer (SST) τ is a 6-tuple τ = (Q,X, Y, q0, E, σ), where:

• τ ′ = (Q,X, Y, q0, E) is a Sequential Transducer

• σ : Q → Y ∗ is a state output (partial) function

• For each input string x, the output string y is obtained
by concatenating σ(q) to τ ′(x), where q is the last
state reached through the analysis of x by τ ′; i.e.:

y = τ(x) = τ ′(x)σ(q)

PROPERTIES:

1. Tτ is a function: X∗ → Y ∗

2. Sequential ⊂ Subsequential Transduction ⊂ Finite State.

3. Input-output monotonicity (sequentiality) needs not be as strict as in STs.
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Subsequential Transducers (intuitive concept)

• Deterministic Finite State Networks which accept sentences from an
input language and produce sentences of an output language.

• In addition to input symbols, output strings are assigned to the edges.

• Output strings are also assigned to final states.

• SST operation relies on “delaying” the production of output symbols
until enough of the input sentence has been seen to guarantee a correct
output.

An example of SST:

un / a triangletriangulo / λ

square
cuadrado / λ

y / triangle and

λ
grande / large triangle

y / square and
grande / large square
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Learning SSTs: the OSTI Algorithm
[Oncina, 91-93]

SSTs can be learned from training examples using the
Onward Subsequential Transducer Inference Algorithm (OSTIA) .

1. Build an “onward” tree representation of the training data (a tree in which
output strings are as close as possible to the root – called “OTST”)

Example:

(un triángulo y un cuadrado , a triangle and a square),
(un triángulo grande , a large triangle),

(un cuadrado , a square)

un / a
triangulo / λ

λcuadrado / square

λgrande / large triangle

y / triangle and a square un / λ λcuadrado / λ

2. Orderly traverse the tree, while merging states in order to get, hopefully,
adequate generalizations.

E. Vidal – ITI-UPV-DSIC January 2005 Page 6.6

Pattern Recognition Machine Translation State-Merging Approaches

OSTIA State-Merging learning procedure

• The traversal of the tree follows a level by level order , typically using the
lexicographic order of state names.

• Two kinds of State Merging:

– Merging based on local conditions : involve only the two states under
consideration. The most basic idea [Oncina, 91-93]:

If both candidate states have the same output, or at least one has no
output, merging is allowed.

– Derived merges : once two states are merged, others may also need to
be recursively merged in order to preserve determinism.

This process may require to “Push-back” certain output substrings.

• If a cascade of derived merges fails preserving determinism, the original
and all the derived merges are discarded.

E. Vidal – ITI-UPV-DSIC January 2005 Page 6.7



Pattern Recognition Machine Translation State-Merging Approaches

Outline of the OSTIA [Oncina,91]

Algorithm OSTIA (”Onward Subsequential Transducer Inference Algorithm”)

Input: Finite set of (non ambiguous) input output pairs T ⊂ (X∗ × Y ∗)
Output : Onward Subsequential Transducer τ compatible with T

τ ′ = OTST (T ); (let Q(τ ′) denote the set of states of τ ′)
∀ q ∈ Q(τ ′)− {q0} in a level-by-level order, do

∀ p < q do
τ = merge(τ ′, p, q)
while ∃q′, q′′ ∈ Q(τ) that violate subsequential conditions, do

– try to restore subsequentiality by Derived Merging,
possibly requiring to “push-back” some output substrings
of the edges incoming to q′, q′′ towards the leaves of τ

– if “Derived Merging” possible then τ = merge(τ, q′, q′′)
end while
if subsequential(τ) then τ ′ = τ

end ∀p
end ∀q

end OSTIA
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An Example of OSTIA state-merging process

  X={a,b} ;    Y={A,B} ;           T={(b,B), (a,AB), (bb,BA), (ba,BB), (aa,AAB)} 

0

1 3

4

5

TST(T)

BA

BB

AAB
a/λ a/λ

AB

a/λb/λ

b/λ
B2

λ

λ

λ

λ

B

b/B

b/A

a/B

a/ABa/A0

1 3

4

5

OTST(T)

2
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An Example of OSTIA state-merging process

λ

λ

λ

λ

X={a,b} ;      Y={A,B} ;            T={(b,B), (a,AB), (bb,BA), (ba,BB), (aa,AAB)} 

B

b/B

b/A

a/B

a/ABa/A0

1 3

4

5 λ

λ

λ

λB
b/B

b/A
a/B

a/AB

a/A

0
3

4

5 λλ

λB
b/B

b/A
a/B

a/A

a/A

0
3

4

5

B

λλ

λB
b/B

b/A
a/B

a/A

0 4

5

q=1, p=0

OTST(T)

push-back

2 2 2 2
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An Example of OSTIA state-merging process

λ

λ

λ

λ

X={a,b} ;      Y={A,B} ;            T={(b,B), (a,AB), (bb,BA), (ba,BB), (aa,AAB)} 

B

b/B

b/A

a/B

a/ABa/A0

1 3

4

5 λ

λ

λ

λB
b/B

b/A
a/B

a/AB

a/A

0
3

4

5 λλ

λB
b/B

b/A
a/B

a/A

a/A

0
3

4

5

B

λλ

λB
b/B

b/A
a/B

a/A

0 4

5

q=1, p=0

OTST(T)

λλ
λB b/B

b/A

a/B

a/A

0 4

5 λλ
λB b/B

b/A

a/B

a/A

0 4

5 λλ
λB b/B

b/A

a/B

a/A

0 4

5
λλB

b/B b/A

a/A

0 5

a/B

q=2, p=0 q=4, p=0 q=4, p=2

push-back

2 2 2

2

2

222
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An Example of OSTIA state-merging process

λ

λ

λ

λ

X={a,b} ;      Y={A,B} ;            T={(b,B), (a,AB), (bb,BA), (ba,BB), (aa,AAB)} 

B

b/B

b/A

a/B

a/ABa/A0

1 3

4

5 λ

λ

λ

λB
b/B

b/A
a/B

a/AB

a/A

0
3

4

5 λλ

λB
b/B

b/A
a/B

a/A

a/A

0
3

4

5

B

λλ

λB
b/B

b/A
a/B

a/A

0 4

5

q=1, p=0

OTST(T)

λλ
λB b/B

b/A

a/B

a/A

0 4

5 λλ
λB b/B

b/A

a/B

a/A

0 4

5 λλ
λB b/B

b/A

a/B

a/A

0 4

5
λλB

b/B b/A

a/A

0 5

λB
b/B b/A

a/A

0 5
λλB

b/B b/A

a/A

0 5
λB

b/B

b/A

a/A

a/B

a/Ba/Ba/B

q=2, p=0

q=5, p=0 q=5, p=2

q=4, p=0 q=4, p=2

FINAL RESULT

push-back

λ

2 2 2

2

2

2

22

2

2
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The Onward Subsequential Transducer Inference Algorithm (OSTIA)

INPUT: input-output pairs T ⊂ (X∗ × Y ∗); OUTPUT: OST τ consistent with T

τ :=OTST(T ); q:=first(τ);
while q < last(τ) do {

q:=next(τ,q); q’:=first(τ);
while q’ < q do {

if σ(q’) = σ(q) or σ(q’) = ∅ or σ(q) = ∅ then {
τ ′:=τ ; merge(τ,q’,q);
while ¬subsequential(τ) do {

let (r,a,v,s), (r,a,v’,s’) be two edges of τ that
violate the subsequential condition, with s’ < s;

if s’ < q and v’ 6∈ Pr(v) then exitwhile ;
u:=lcp(v’,v);
push back(τ,u−1v’, (r,a,v’,s’));
push back(τ,u−1v, (r,a,v,s));
if σ(s’) = σ(s) or σ(s’) = ∅ or σ(s) = ∅
then merge(τ,s’,s) else exitwhile ;

} // while ¬subsequential(τ)

if ¬subsequential(τ) then τ :=τ ′ else exitwhile ;
} // if σ(q’) = σ(q)

q’:=next(τ,q’);
} // while q’ < q

} // while q < last(τ)
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Properties of OSTIA learning
[Oncina, Garcı́a & Vidal, 93]

• Correctness: the resulting transducer is subsequential and is a (state-merging)
generalization of the set of training pairs T .

• Convergence: Using OSTIA the class of total Subsequential Transductions can
be identified in the limit.

• Efficiency: OSTIA average running time is observed to be O(n(m + k)), where

– n =
∑

(x,y)∈T |x|, (overall length of input strings)

– m = max(x,y)∈T |x| (longest output string)

– k = |X| (size of input alphabet).

⇒ huge sets of training examples can be easily handled.
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Applications of SSTs and OSTIA learning

• Learning several toy but not trivial transduction tasks [Oncina, 91-93].

– Simple Arithmetic (e.g., decimal division by a fixed number).
– Conversion of (large) English Numbers into Decimal notation.
– Translation of (large) English Numbers into Spanish (and vice versa).
– Conversion of Roman Numbers into Decimal.
– etc.

• Semantic Decoding:

– MLA [Castellanos et al.,98]
– (Subset of) ATIS [Vidal,94]

• Language Translation:

– MLA [Castellanos et al.,94]
– Traveler Task [Amengual et al., 95-99]
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Language Understanding through semantic decoding

Given a speech or text input sentence, produce an output which
can be used to drive the actions specified in this sentence.

TYPICAL EXAMPLES:

• ATIS (Air Travel Information Systems):

– input : Spontaneous English Sentences
– output : Formal Query commands to the ATIS Data Base

• BDGEO (Spanish Geographic Quest):

– input : Natural Language Spanish Sentences
– output : Formal Query commands to BDGEO

• MLA (“Miniature Language Acquisition [Feldman et al., 90]):

– input : Quasi-natural English Sentences
– output : First-Order Predicate Logic Formulae
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A simple experimental language understanding task: MLA
[Feldman et al., 90]

• Involves description and manipulation of simple visual scenes.

• Originally introduced as a challenging Language Learning task with a
fairly simple syntax and small lexicon (about 30 words).

• Extended, as required, to study the impact of increasing complexity,
vocabulary size, etc.

Examples:

a medium light square and a circle are far above a light circle and a medium square

a large dark triangle is added far to the left of the square and the medium circle

the large circle which is above the square and the medium triangle is removed
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MLA: language understanding through semantic decoding
[Castellanos et al.,94-98]

• Visual scenes of MLA “understood” in terms of (first-order) logic formulae.

• Objects = Variables: x, y, z, w (allow up to four objects in a scene).

• 8 unary predicates on variables for shape, shade and size

• 9 (0-ary or binary) predicates for object relative positions (above, below,
far below, to the right, touch, etc).

• Three increasingly non-monotone representations for object relations: L1,
L2, L3. Translation into L1 is purely sequential; subsequential for L2 and L3

Examples:

a small triangle touches a medium light circle and a large square

L1: ( Sm(x) & T(x) ) To ( M(z) & Li(z) & C(z) & La(w) & S(w) )
L2: Sm(x) & T(x) & To(x,z) & M(z) & Li(z) & C(z) & To(x,w) & La(w) & S(w)
L3: Sm(x) & T(x) & M(z) & Li(z) & C(z) & La(w) & S(w) & To(x,z) & To(x,w)
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Air Travel Information System (ATIS): semantic decoding

Translate English sentences into a semantic representation
in terms of “Pseudo English” (PE) formal queries.

Examples:

show all flights and fares from <city> to <∗city>
LIST FLIGHTS FROM<CITY> AND TO <∗CITY> ALONG WITH FARES

I’d like information on <airline> flight from <city> to <∗city>
LIST FLIGHTS FROM<CITY> AND TO <∗CITY> AND <AIRLINE>

I’d like to find chipest fare one-way fare from <city> to <∗city>
LIST CHEAPEST ONE-WAY FARES CHARGED FOR FLIGHTS FROM<CITY> AND TO <∗CITY>

please tell me about ground transportation from <city> airport to downtown <∗city>
LIST GROUND SERVICES PROVIDED FOR<AIRPORT> AND PROVIDED FOR<∗CITY>

what airline is <airline> abbreviation for
LIST AIRLINES WHOSE AIRLINE CODE IS<AIRLINE>

English sentences in lowercase, Pseudo-English commands in capitals.
Tokens within angular brackets are “generic non-terminals” or bilingual categories.
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Semantic decoding: OSTIA learning results

Evolution of test-set semantic error and size of the OSTIA
learned transducers for increasing amounts of training data.

MLA-L3 (10k test sentences)
(similar results for L2;
slightly better for L1)

ATIS (146 test sentences)
(small subset of short,

class A sentences)

�����������

���������
	

���������

��������	

���������

���������

��������	

���������

��������

���������

� ������� ��������� ��������� ���������

����
��
������
��
�

���
 ! �
�
�" #
� ����$
�
%&
�&('
�$

)+*-,�.0/1.0/12435,�.
*76

error

edges

states

���
� �
���
���
���
� �
� �
	 ���

�

	 �

	 ���


 ���

� 
 ��� � ��� ����� � ��� 	 �����

���
��
�����
��
�

��
�� �
�
�� �
� �����
�
��
��! 
��

"$#&%�')(*')(*+-,.%�'/#10

2 3 4 2 5

5 6 7 6 2 5

2 8 8 9 8

E. Vidal – ITI-UPV-DSIC January 2005 Page 6.20

Pattern Recognition Machine Translation State-Merging Approaches

OSTIA-learned SST for the MLA
language understanding task (L1)

0 /  )

right / R (
left / L (
the / λ
to / λ
is / )

small / Sm(x) &
medium / M(x) &

light / Li(x) &
large / La(x) &
dark / D(x) &
triangle / T(x)
square / S(x)
circle / C(x)

a / (

1 / λ

far / λ

and / &

2 /  )

of / λ
touches / ) To (

below / B (
above / A (

are / λ
right / FR (

left / FL (

the / λ
to / λ

small / Sm(y) &
medium / M(y) &

light / Li(y) &
large / La(y) &
dark / D(y) &

triangle / T(y) )
square / S(y) )
circle / C(y) )

a / λ

touch / To (

below / FB (

above / FA (

small / Sm(z) &
medium / M(z) &

light / Li(z) &
large / La(z) &
dark / D(z) &
triangle / T(z)
square / S(z)
circle / C(z)

a / λ

3 / ø

and / &

triangle / T(w) )

square / S(w) )

circle / C(w) )

small / Sm(w) &
medium / M(w) &

light / Li(w) &
large / La(w) &
dark / D(w) &

a / λ
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Machine Translation (MT) and Subsequential Tansduction

• Translation between languages can be modeled by Finite
State (FS) mappings

• An important advantage of FS Translation Models is their
great adequacy to be used for speech-input MT

• Theoretically speaking, most language pairs involve only
subsequential mappings (output text can be produced
without having to wait until the end of the input discourse!)

• In practice, many language pairs do involve only short-term
input/output asyncronies

• Subsequential Transducers can be appropriate for
Limited Domain MT applications
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A simple experimental Machine Translation task: MTA
[Feldman et al., 90] [Castellanos et al., 94]

• Based on MLA (description and manipulation of simple visual scenes),
winch was originally introduced as a challenging Language Learning
task with a fairly simple syntax and small lexicon (about 30 words).

• Reformulated for Machine Translation and extended, as required, to
study the impact of increasing degree of input-output non-monotonicity,
vocabulary size, etc.

Examples ( Spanish -English ):

un cuadrado mediano y claro y un cı́rculo tocan a un cı́rculo claro y un cuadrado mediano
a medium light square and a circle touch a light circle and a medium square

se añade un triángulo grande y oscuro muy a la izquierda del cuadrado y del cı́rculo
a large dark triangle is added far to the left of the square and the circle

se elimina el cı́rculo grande que esta encima del cuadrado y del triángulo mediano
the large circle which is above the square and the medium triangle is removed
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MTA translation results using OSTIA
[Castellanos, Galiano and Vidal, ICGI–94], [Oncina et al., ICSNLP–94]

Spanish-English Translation Word Error Rates for the Extended MTA
Task, as a function of the Training Set size supplied to OSTIA.
Test Set: 10,000 independent text input sentences.

Train. Size WER States Edges
1,000 58.8% 412 1652
2,000 57.0% 846 3197
4,000 51.8% 1598 5970
8,000 3.4% 186 891

16,000 0.0% 17 206

• Convergence starts from 4,000–8,000 training pairs (decreasing
size of the learned transducers).

• Good results achieved with very compact transducers learned
from reasonably small training sets.

. Bad news: These SSTs perform very poorly with imperfect text or speech input.
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“Good” basic SSTs can accept incorrect input
producing even more incorrect output!

OSTIA learning generalizes the training pairs as much as possible, while
preserving the input-output mapping represented by these pairs.
This may lead to compact and accurate transducers but they generally
involve excessive over-generalization of the input and output sentences.

debajo izquierda esta por → square is removed
elimina un y → the a

a y y claro que → light square triangle which is
muy esta oscuro → dark square which is square

Examples of Spanish sentences accepted (and translated) by a “good”
transducer learned by OSTIA (0.0% translation WER for clean text input).

⇓
This is not a problem for translating clean text but it leads to

very large translation errors for corrupted text or for speech input!
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Basic OSTIA–learned SST for Spanish-English MTA

tra/0000_12.50.tra

0

un / a 
se / 

elimina / the 
cuadrado / 

el / 
esta / square is 

toca / square touches a 
encima / 

estan / square are 
tocan / square touch a 

# / square 

6muy / 
que / square which is 

izquierda / 

5

derecha / 

1

aNade / a 
circulo / 

y / square and a 
a / 

debajo / 
del / square is added above the 

de / above a 
la / 

3
mediano / medium 

grande / large 

pequeNo / small 

4

claro / light square 
oscuro / dark square 

2

triangulo / 

# / circle 

por / del / square is added to the left of the 

de / to the left of a 

debajo / 
encima / 

a / 

y / circle and the 

8

esta / 

9pequeNo / small 
grande / large 

mediano / medium 

10

claro / light circle 

oscuro / dark circle 

esta / triangle is 
toca / triangle touches a 

a / triangle is added to the 
estan / triangle are 

tocan / triangle touch a 
# / triangle 

que / triangle which is 
del / square is added to the right of the 

de / to the right of a 

y / 

encima / triangle is added above the 
debajo / triangle is added below the 

7

muy / triangle is added far 

un / 
# / circle 

toca / circle touches a 
esta / circle is 

a / circle is added to the 
estan / circle are 

tocan / circle touch a 
la / 

que / circle which is 

circulo / 

pequeNo / small 
mediano / medium 

grande / large 
del / square is added below the 

de / below a 

y / 

claro / light circle 
oscuro / dark circle 

debajo / circle is added below the 

encima / circle is added above the 
izquierda / left of the 
derecha / right of the 

cuadrado / 

muy / circle is added far 

triangulo / 

toca / square touches a 
esta / square is 

# / square 

a / square is added to the 
tocan / square touch a 

estan / square are 
un / circle and a 

que / square which is 

del / square is added far below the 

de / far below a 

la / 
y / 

oscuro / dark circle 

claro / light circle 

debajo / square is added below the 
encima / square is added above the 

muy / square is added far 

izquierda / left of the 

derecha / right of the 

esta / is 
toca / touches a 

# / 
a / is added to the 

estan / are 
tocan / touch a 

un / square and a 

que / which is 

y / and a 

del / square is added far above the 

de / far above a 

claro / light square 
oscuro / dark square 

debajo / is added below the 
encima / is added above the 

muy / is added far 

toca / triangle touches a 
esta / triangle is 

a / triangle is added to the 
tocan / triangle touch a 

estan / triangle are 

# / triangle 
un / triangle and a 

que / triangle which is 

grande / large 

mediano / medium 
pequeNo / small 

y / triangle and a 

del / 

claro / light triangle 
oscuro / dark triangle 

encima / triangle is added above the 
debajo / triangle is added below the 

la / 

izquierda / 

muy / triangle is added far 

15

circulo / 

14

cuadrado / 

13
triangulo / 

derecha / 

# / square 

del / square is added far to the left of the 
de / far to the left of a 

a / to the 

muy / far 
mediano / medium 
pequeNo / small 

grande / large 
por / 

encima / above the 

debajo / below the 

oscuro / dark square 

claro / light square 

11

y / 

a / to the 
# / triangle 

debajo / below the 

encima / above the 
del / 

por / 
grande / large 

mediano / medium 
pequeNo / small 

claro / light triangle 

oscuro / dark triangle 
y / 

# / circle is removed 

del / circle and the 

mediano / medium 
pequeNo / small 

y / 
grande / large 

12
claro / light circle 

oscuro / dark circle 

# / square is removed 

del / square and the 
y / 

mediano / medium 
grande / large 

pequeNo / small 

oscuro / dark square 
claro / light square 

# / triangle is removed 

del / triangle and the 

y / triangle and the 
mediano / medium 

grande / large 
pequeNo / small 

oscuro / dark triangle 
claro / light triangle 

# / circle de / far to the right of a 
del / square is added far to the right of the 

y / 

# / 

del / triangle and the 

y / and the 

claro / light triangle 
oscuro / dark triangle 

del / square and the 

# / triangle is removed 

y / 

claro / light square 

oscuro / dark square 

del / circle and the 
# / is removed 

y / and the 

oscuro / dark circle 

claro / light circle 
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A Difficult-to-learn (partial) Subsequential Transduction

Let t : {a, b, c}∗ → {0, 1, 2}∗ be a partial Subsequential function defined as:

t = {(cm, 2m)|m ≥ 0} ∪ {(cmac2n, 2m02n)|m,n ≥ 0} ∪ {(cmbc2n+1, 2m12n+1)|m,n ≥ 0}

A Subsequential
Transducer realizing t: λ

c / 2
λ

q
a / λ

q’

b / 1

c / 00

λ
c / λ

c / λ

c / 11

Samples of t, up
to input length 6:

(,) (cbc, 21) (cccc, 2222) (bccccc, 11111)
(a, ) (cca, 22) (acccc, 0000) (cacccc, 20000)
(c, 2) (ccc, 222) (cbccc, 2111) (ccbccc, 22111)
(bc, 1) (bccc, 111) (ccacc, 2200) (cccacc, 22200)
(ca, 2) (cacc, 200) (cccbc, 2221) (ccccbc, 22221)
(cc, 22) (ccbc, 221) (cccca, 2222) (ccccca, 22222)
(acc, 00) (ccca, 222) (ccccc, 22222) (cccccc, 222222)

No transduction example can help distinguish the states q and q′.
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Onward Tree Subsequential Transducer and OSTIA result

λ

λc / 2

λa / λ

  

b / 1

λc / 2

λa / λ

  
b / 1

  
c / 00

λc / λ

λc / 2

λa / λ

  
b / 1

  
c / 00

λc / λ

λc / λ

  
c / 11

λc / 2

λa / λ

  
b / 1

  
c / 00

λc / λ

λc / λ

  
c / 11

  
c / 00

λc / λ

λc / 2

λa / λ

  
b / 1

  
c / 00

λc / λ

λc / λ

  
c / 11

  
c / 00

λc / λ

λc / λ

  
c / 11

λc / 2

λ
a / λ

λc / λ

λc / λ

λc / λ

λc / λ

λc / λ

OTST of a sample of t consisting of all the input-output pairs up to an input length of 6.

λ

c / 2

λ
b / 1

a / λ
λc / λ

00
c / λ

11
c / λ

0000
c / λ

1111
c / λ

Transducer yield by OSTIA from this OTST.
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Helping OSTIA with input/output syntactic constraints

Two kind of conditions for OSTIA state merging:

• Local conditions: involve only the two states under consideration.

Basic OSTIA allows merging two candidate states if both have
the same output or at least one has no output [Oncina, 91-93].

• Derived merges: once two states have been merged, others may
also need to be merged (while possibly “pushing-back” some
output substrings) in order to preserve determinism.

New Local Conditions:

Use Finite-State Models of the Input (or Domain) and/or the Output
(or Range) to enforce Input and/or Output Syntactic Constraints

Idea [Oncina, 93-94]: disallow the merging of two states if they
correspond to different states of the Input or Output models .

The resulting algorithm is known as OSTIA-DR
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OSTIA-DR
[Oncina,93]

• The use of Domain (and Range) information can be accomplished by
labeling each state of the initial Onward Tree Subsequential Transducer
(OTST) with the name of the state of the Domain (or Range) FS Model
that would be reached with the corresponding strings.

• The local compatibility rules then include the condition of disallowing the
merging of two states if their labels are distinct.

• The resulting SSTs only accept input sentences and only produce
output sentences compatible with the syntactic constraints
represented by the FSMs used

. This becomes essential for imperfect text or speech input.

• Using OSTIA-DR, the class of partial Subsequential Functions can be
identified in the limit.
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Using input/output syntactic constraints:

outline of OSTIA-DR [Oncina et al.,94]

Algorithm OSTIA-DR (”OSTIA assisted by DOMAIN/RANGE constraints”)
Input: Finite set of (non ambiguous) input output pairs T ⊂ (X∗ × Y ∗)

Finite-State models, GD, GR, of the Domain (X∗) and Range (Y ∗)

Output : Onward Subsequential Transducer τ ′ compatible with T

Method:
τ ′ = OTST (T ); (let Q(τ ′) denote the set of states of τ ′)
∀ q ∈ Q(τ ′)− {q0} in a level-by-level order, do

∀ p < q if p, q are compatible with GD and/or GR do

τ = merge(τ ′, p, q)

while ∃q′, q′′ ∈ Q(τ) that violate subsequential conditions, do
– try to restore subsequentiality by Derived Merging,

possibly requiring to “push-back” some output substrings
of the edges incoming to q′, q′′ towards the leaves of τ ′

– if “Derived Merging” possible then τ = merge(τ, q′, q′′)

end while
if subsequential(τ) then τ ′ = τ

end ∀p

end ∀q

end OSTIA
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FS input and output models for the “difficult transduction”
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OSTIA-D learning

Training set: T = {(a, λ), (acc, 00), (acccc, 0000), (bc, 1), (bccc, 111), (c, 2)}
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OSTIA-R learning
Training set: T = {(a, λ), (acc, 00), (acccc, 0000), (bc, 1), (bccc, 111), (c, 2), (cc, 22)}.
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Using input-language constraints: OSTIA-D

INPUT: input-output pairs, T ⊂ (X∗× Y ∗), Finite-State model, GD, of the Domain (X∗)
OUTPUT: OST τ consistent with T and GD

τ :=OTST(T ); q:=first(τ);
while q < last(τ) {

q:=next(τ,q); q’:=first(τ);
while q’ < q {

if (σ(q’) = σ(q) or σ(q’) = ∅ or σ(q) = ∅) and
δD(p0, input prefix(q’)) = δD(p0, input prefix(q)) then {

τ ′:=τ ; merge(τ,q’,q);
while ¬subsequential(τ) {

let (r,a,v,s), (r,a,v’,s’) be two edges of τ that
violate the subsequential condition, with s’ < s;

if s’ < q and v’ 6∈ Pr(v) then exitwhile
u:=lcp(v’,v);
push back(τ,u−1v’, (r,a,v’,s’)); push back(τ,u−1v, (r,a,v,s));
if σ(s’) = σ(s) or σ(s’) = ∅ or σ(s) = ∅
then merge(τ,s’,s) else exitwhile

} // while ¬subsequential(τ)
if ¬subsequential(τ) then τ :=τ ′ else exitwhile

} // if σ(q’) = σ(q)
q’:=next(τ,q’);

} // while q’ < q
} // while q < last(τ)
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Using output-language constraints: OSTIA-R

INPUT: input-output pairs, T ⊂ (X∗×Y ∗), Finite-State model, GR, of the Range (X∗)
OUTPUT: OST τ consistent with T and GR

τ :=OTST(T ); q:=first(τ);
while q < last(τ) {

q:=next(τ,q); q’:=first(τ);
while q’ < q {

if (σ(q’) = σ(q) or σ(q’) = ∅ or σ(q) = ∅) and
δR(p0, outut prefix(q’)) = δR(p0, output prefix(q)) then {

τ ′:=τ ; merge(τ,q’,q);
while ¬subsequential(τ) {

let (r,a,v,s), (r,a,v’,s’) be two edges of τ that
violate the subsequential condition, with s’ < s;

if s’ < q and v’ 6∈ Pr(v) then exitwhile
u:=lcp(v’,v);
push back(τ,u−1v’, (r,a,v’,s’)); push back(τ,u−1v, (r,a,v,s));
if σ(s’) = σ(s) or σ(s’) = ∅ or σ(s) = ∅
then merge(τ,s’,s) else exitwhile

} // while ¬subsequential(τ)
if ¬subsequential(τ) then τ :=τ ′ else exitwhile

} // if σ(q’) = σ(q)
q’:=next(τ,q’);

} // while q’ < q
} // while q < last(τ)
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MTA: OSTIA and OSTIA-DR learning performance
Spanish-English Extended MTA Learning performance as a function of training-set size. Domain
and/or range Language Models: 3-TSS (3-Gram); Test Set: 100,000 independent input sentences.
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Spanish-English MTA: OSTIA and OSTIA-DR learning results

Translation Word Error Rates for the Extended MTA Feldman’s
Task, as a function of the Training Set size supplied to OSTIA
and OSTIA-DR (with 4-Gram Language Models)

Test Set: 10,000 independent input sentences.

Training OSTIA OSTIA-DR
Set Size WER States Edges WER States Edges

1,000 58.8% 412 1652 55.1% 813 2023
2,000 57.0% 846 3197 47.1% 1406 3353
4,000 51.8% 1598 5970 30.1% 1686 4051
8,000 3.4% 186 891 1.4% 244 719

16,000 0.0% 17 206 0.0% 100 363

Using Input/Output syntactic constraints,
translation errors can be reduced by a factor of two.
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MTA OSTIA and OSTIA-DR learning: impact of noisy
text input and input–output language syntactic constraints

Spanish-English Translation Word Error Rates of distorted test sentences
for the Extended MTA Task, as a function of the Training Set size supplied to
OSTIA and OSTIA-DR (with 4-Gram Input and Output Language Models).
Noisy input Translations obtained using Error-Correcting Parsing.

Test Set: 10,000 clean and 5%-distorted independent input sentences.

Train.Set OSTIA OSTIA OSTIA-DR OSTIA-DR
Size Clean 5%Dist Clean 5%Dist
8,000 3.4% 15.0% 1.4% 2.7%

16,000 0.0% 11.7% 0.0% 1.7%

Using Input/Output syntactic constraints increases robustness dramatically
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MTA OSTIA and OSTIA-DR Learning: examples
of distorted input sentences and the obtained translations

I=Original Input; D=5% Distorted Input; T=System Translation.

Correctly Translated:

I : se elimina el cı́rculo grande y claro que está muy por encima del triángulo oscuro y del cuadrado • mediano
D: se elimina y cı́rculo grande y claro • está muy por encima • triángulo oscuro y del cuadrado un mediano
T: the large light circle which is far above the dark triangle and the medium square is removed

:
I : un • cı́rculo mediano y claro est á debajo de un cuadrado pequeño y claro y un triángulo pequeño y oscuro
D: un tocan cı́rculo mediano y claro • debajo de un cuadrado pequeño claro y se triángulo pequeño y oscuro
T: a medium light circle is below a small light square and a small dark triangle

Translation Errors:

I : se • elimina el cı́rculo que está muy a la izquierda del cı́rculo oscuro y del triángulo mediano y oscuro
D: se de de el • que está muy a la izquierda del cı́rculo oscuro y del triángulo mediano y oscuro
T: the square which is far to the left of the dark circle and the medium dark triangle is removed

:
I : se añade un triángulo mediano y claro muy a la derecha del cuadrado mediano y oscuro y del cı́rculo pequeño y oscuro
D: se añade un triángulo la y claro muy a la derecha del cuadrado mediano y oscuro oscuro claro cı́rculo pequeño y oscuro
T: a small light triangle is added far to the right of the medium dark square and the small dark circle
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A Finite-State domain (Spanish) language model for MTA

3-TSS Automaton (entailing 3-Gram constraints)
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A Finite-State range (English) language model for MTA

3-TSS Automaton (entailing 3-Gram constraints)

0

6

 the
2

 a

7 dark
 light

4

 small

 medium
 large

8

 circle
 triangle

 square
 dark

 light
3

 circle
 triangle
 square

 small

 medium

 large

1
 and

15
 is

9

 are

13 which

17 touch
 touches

 above
 below 16 far

10 to

5

 removed
19

 added

 above

 below

 far

 to

14

 is

 a

 circle
 triangle
 square

 and

 is

 are

 touch
 touches

 circle
 triangle
 square dark

 light

 and

 is which

 above
 below

 to
11 the 12 left

 right

 of

 above
 below

 far
 to

 far

 to
18 above

 below

 the

E. Vidal – ITI-UPV-DSIC January 2005 Page 6.43



Pattern Recognition Machine Translation State-Merging Approaches

OSTIA-DR–learned SST for Spanish-English MTA

(using both Domain and Range 3-Gram constraints)

tra/m3dr_12.50.tra
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Scalability issues

Subsequential Transduction copes with Input-Output non-
monotonicity by delaying the decision for output (sub)strings.

A training pair and a corresponding SST:

(se elimina un triángulo grande y claro, a large light triangle is removed)

λy/ claro/lightelimina/λse/λ un/ a triangulo/λ grande/large
triangle is removed

Problem:

The number of states can grow as much as O(nk), where
n is the number of functionally equivalent input words and
k is the number of word–positions to be delayed.

The required amount of training data can become prohibitive.
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Dealing with increasing vocabulary size ( n)
and degree of non-monotonicity ( k)

Approaches:

n ⇒ Bilingual Categorization
[Vilar, Marzal, Vidal, Eurospeech-95]:

While the direct approach degrades rapidly with increasing vocabulary
sizes, categorization largely prevents accuracy degradation.

k ⇒ Partial Alignment and Word Reordering
[Vilar, Vidal, Amengual, Llorens, ECAI-96, SPECOM-96]:

Training-data requirements can be reduced dramatically.
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Cutting down the impact of increasing
vocabulary size through Bilingual Categorization

• Substitute words or groups of words by labels representing their syntactic
(or semantic) categories within a limited rank of options.

• Learn a transducer with the categorized sentences, which entails a
(much) smaller effective vocabulary.

• Expand each category-labeled edge of the learned transducer with a
(small) transducer for this category.

Expansion leads to a single, perhaps large transducer which encompasses
all the required information.

Categorization helps achieving adequate generalizations and proves very
effective to prevent degradation of results with increasing vocabulary sizes.
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A very small MTA Spanish-English training set

se añade un triángulo claro ↔ a light triangle is added
se añade un cı́rculo claro ↔ a light circle is added

se añade un triángulo oscuro ↔ a dark triangle is added
se añade un cı́rculo oscuro ↔ a dark circle is added

se elimina un triángulo claro ↔ a light triangle is removed
se elimina un cı́rculo claro ↔ a light circle is removed

se elimina un triángulo oscuro ↔ a dark triangle is removed
se elimina un cı́rculo oscuro ↔ a dark circle is removed

A Categorized version of this Training Set

se $ACCION un $FORMA $COLOR ↔ a $COLOR $SHAPE is $ACTION
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Subsequential Transducer for the very small MTA
Spanish-English training set

se / λ
elimina / λ

aNade / λ

un / a

 
 un / a

circulo / λ

 
 triangulo / λ

circulo / λ
triangulo / λ

 λ 

claro / light circle is removed

oscuro / dark circle is removed

 
 claro / light triangle is removed

oscuro / dark triangle is removed
 

 claro / light circle is added

oscuro / dark circle is added

 
 claro / light triangle is added

oscuro / dark triangle is added

Size grows very fast with the number of words in each category.

Categorized Transducer
se/λ a λλ/ /$FORMA $COLOR / $COLOR$ACCION un/

$SHAPE  is  $ACTION

Size no longer depends on the number of words in each category.
E. Vidal – ITI-UPV-DSIC January 2005 Page 6.50

Pattern Recognition Machine Translation State-Merging Approaches

MTA extensions for experimentation with Bilingual Categories

Four extensions to the (extended) Feldman’s MTA task:

• EXT1: 6 shapes, 3 sizes, 2 shades (Voc.: 37/28 Spanish/English words)

• EXT2: 12 sahpes, 5 sizes, 4 shades/colors (Voc.: 50/36 words)

• EXT3: 18 shapes, 7 sizes, 6 shades/colors (Voc.: 63/48 words)

• EXT4: 118 shapes, 57 sizes, 56 shades/colors (Voc.: 363/248 words)
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MTA: cutting down the impact of
increasing vocabulary using Bilingual Categories

[Vilar, Marzal and Vidal, Eurospeech-95]

Translation Sentence Error Rate (in %) for two training-set sizes
and increasing vocabulary sizes (3 categories: NOUN, ADJ, ADV).
Test set: 10,000 independent sentences.

Inp/Out 8,000 Train. Pairs 32,000 Train. Pairs
Voc.Sizes Direct Categ. Direct Categ.

37/28 3.1 0.9 0.5 0.2
50/38 42.1 1.5 5.7 0.3
63/48 62.5 3.0 26.5 0.6

363/248 91.3 3.4 98.0 0.7

While the direct approach degrades rapidly with increasing vocabulary sizes,
categorization keeps the accuracy essentially unchanged .
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A more complex and practical application:
the “Traveler Task”

• Domain: human-to-human communication situations in the
front-desk of a hotel.

• Data produced semi-automatically on the base of a small “seed
corpus” obtained from several traveler-oriented booklets.

• Three language pairs: Spanish-English, Spanish-German and
Spanish-Italian (only Spanish-English results reported here;
similar results for the other languages).
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The Traveler Task: features and examples
[Vidal et al., 96] (EuTrans ESPRIT project – first-phase)

Different sentence pairs in the corpus 171,481
Input/output vocabulary sizes 689 / 514
Average input/output sentence lengths 9.5 / 9.8
Input/output (2-Gram) test-set perplexities 12.8 / 7.0

(Similar features for Spanish-German and Spanish-Italian corpora)

Examples ( Spanish -English ):

Reservé una habitación individual y tranquila con televisión hasta pasado mañana.
I booked a quiet, single room with a tv. until the day after tomorrow.

Despiértenos mañana a las ocho menos cuarto, por favor.
Wake us up tomorrow at a quarter to eight, please.

Por favor, prepárenos nuestra cuenta de la habitación dos veintidós.
Could you prepare our bill for room number two two two for us, please?
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Traveler Task text-input experiments
[Vidal et al., 96] (EuTrans – first-phase Final Report)

OSTIA–DR learning using
Input and Output 3–Gram
LM Constraints, with and
without Categorization
into 7 categories:
dates, times-of-day,
room-numbers, etc.

Test-Set:
2,730 different sentences. 0
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. Categorization leads to useful accuracy using moderate amounts of training data.
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Traveler Task Error-Correcting experiments

• OSTIA–DR learning using Input/Output 3–Gram LMs,

• Error model parameters estimated from artificially distorted input
sentences, through Expectation-Maximisation and Viterbi re-estimation.
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R
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%
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Different Training Pairs (thousands)
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. Training-data demands can be reduced by a factor of 2-3.
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Traveler Task: summary of text-input results

Impact of using Categories and Error Correcting Parsing

• OSTIA-DR learned Subsequential Transducers

• Training based on the largest training sets available

• Error model parameters estimated from artificially
distorted input text

• Test-set: clean (undistorted) independent input text

OSTIA-DR OSTIA-DR OSTIA-DR +
(baseline) + Categories Categories+ECP

Spanish-English 13.33 % 0.74 % 0.18 %
Spanish-German 29.86 % 1.23 % 0.54 %
Spanish-Italian 17.60 % 2.54 % 0.51 %
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Traveler Task: human subjective assessment results
[Vidal et al., 96] (EuTrans ESPRIT project – first-phase)

• Comparison of EuTrans results with translations provided by low-
cost commercial translation packages, adapted to the Traveler Task.

• Human subjective results based on three experts.

Spanish-to-German Spanish-to-English
Power Spanish

EUTRANS EUTRANS Translator Assistant
PCT 81.7% 87.3% 49.0%
PCIT 93.3% 90.3% 79.7% 75.3%
UM +0.86 +0.81 +0.64 +0.57

• PCT: Percentage of correct translations

• PCIT: Ppercentage of correctly intelligible translations

• UM: An approximate usefulness measure

E. Vidal – ITI-UPV-DSIC January 2005 Page 6.58

Pattern Recognition Machine Translation State-Merging Approaches

Automatic bilingual word clustering

As task complexity and diversity increase, automated
methods are required to discover the bilingual categories
which are actually relevant in a given corpus of the task.

A basic idea:

• Modify well-known, monolingual, K-means style word clustering
techniques, by including translation information.

• Derive this information from an initial bilingual (probabilistic) dictionary.

• This dictionary can be obtained manually and/or using simple statistical
techniques such as the IBM-1 translation model.

Preliminary experiments show that techniques based on this idea
often supply very adequate bilingual clusters of (individual) words.
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Cutting down the impact of increasing
vocabulary size ( n) and degree of non-monotonicity ( k)

Approaches:

n ⇒ Bilingual Categorization
[Vilar, Marzal, Vidal, Eurospeech-95]:

While the direct approach degrades rapidly with increasing vocabulary
sizes, categorization largely prevents accuracy degradation.

k ⇒ Partial Alignment and Word Reordering
[Vilar, Vidal, Amengual, Llorens, ECAI-96, SPECOM-96]:

Training-data requirements can be reduced dramatically.
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A small training set from the MTA task

se elimina un triángulo grande y claro ↔ a large light triangle is removed
se elimina un triángulo pequeño y claro ↔ a small light triangle is removed

se elimina un cı́rculo grande y claro ↔ a large light circle is removed
se elimina un cı́rculo pequeño y claro ↔ a small light circle is removed

se elimina un triángulo grande y oscuro ↔ a large dark triangle is removed
se elimina un triángulo pequeño y oscuro ↔ a small dark triangle is removed

se elimina un cı́rculo grande y oscuro ↔ a large dark circle is removed
se elimina un cı́rculo pequeño y oscuro ↔ a small dark circle is removed

se añade un triángulo grande y claro ↔ a large light triangle is added
se añade un triángulo pequeño y claro ↔ a small light triangle is added

se añade un cı́rculo grande y claro ↔ a large light circle is added
se añade un cı́rculo pequeño y claro ↔ a small light circle is added

se añade un triángulo grande y oscuro ↔ a large dark triangle is added
se añade un triángulo pequeño y oscuro ↔ a small dark triangle is added

se añade un cı́rculo grande y oscuro ↔ a large dark circle is added
se añade un cı́rculo pequeño y oscuro ↔ a small dark circle is added
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Transducer for the small MTA training set

-

se / a
aNade / λ
elimina / λ

un / λ

un / λ

circulo / λ

 triangulo / λ

circulo / λ
 

 triangulo / λ

pequeNo / small

grande / large

pequeNo / small
grande / large

pequeNo / small
grande / large

pequeNo / small

grande / large

y / λ

y / λ

y / λ

y / λ

λ

oscuro / 
 dark circle is added

claro / 
 light circle is added

oscuro / 
 dark triangle is added

claro / 
 light triangle is added

oscuro / 
 dark circle is removed

claro / 
 light circle is removed

oscuro / 
 dark triangle is removed

claro / 
 light triangle is removed

Size grows exponentially with the number of words to be delayed.
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Coping with increasing input/output non-monotonicity
[Vilar et al., 1996]

Words of the (training) output sentences can be easily reordered on the base
of partial alignments, wich can be obtained, e.g., using a probabilistic bilingual
dictionary such as the one obtained by training an IBM-1 translation model.

a removed < triangle < large light > is >

a large light triangle is removed

se elimina un triangulo grande y claro

se elimina un triangulo grande y claro

Original pair and a partial alignment (above). Reordering-Bracketing results (below).

Reordering is performed along with a bracketing scheme
which allows recovering the correct word order.
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The Reordering Algorithm

Reordering is done by scanning the output sentence from left to right
and creating a new reordered and bracketed sentence along the way.

a large light triangle is removed

se elimina un triangulo grande y claro

Step Word Result (reordered and bracketed sentence)
1 a a
2 large a large
3 light a large light
4 triangle a triangle< large light>
5 is a triangle< large light> is
6 removed a removed< triangle< large light> is >
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Transducer for the reordered small MTA training set

se / λ elimina / a removed <
 

 aNade / a added <

un / λ circulo / circle <
 

 triangulo / triangle <

pequeNo / small
 

 grande / large

y / λ
λ

claro / light > is >
 

 oscuro / dark > is >

. The number of states no longer grows exponentially

. Learning can be achieved with far less training data
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Recovering the correct word order

“Un-reordering” can be easily done
with the help of the embedded brackets and a stack:

Reordered sentence:

“a removed< triangle< large light> is> ”

Step Word Stack Output
1 a ∅ a
2 removed< removed a
3 triangle< removed, triangle a
4 large removed, triangle a large
5 light removed, triangle a large light
6 > removed a large light triangle
7 is removed a large light triangle is
8 > ∅ a large light triangle is removed

Result: “a large light triangle is removed”
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Reordering-based training and translation procedures
[Vilar et al., 1996]

Training: Given a training set S of pairs of input/output sentences (x, y), the
proposed training approach proceeds as follows:

1. Train IBM Model-1 on S and obtain a probabilistic dictionary D.

2. Prune from D those pairs of words with probability below a threshold.

3. Partially align the pairs of sentences in S using the pruned D.

4. Reorder and bracket the output sentences of S to produce S′.

5. Using OSTIA, learn a SST T from S′.

Translation: Given a new test input sentence x the trained system produces
a translation y through the following simple steps:

1. Using T , obtain the translation y′ of x

2. “Un-reorder” y′ with the help of its embedded brackets to obtain y
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Balancing the brackets

Possible problem:
Transducers learned by OSTIA with output-reordered training data may not
perfectly generalise a balanced bracketing for new unseen input test sentences.

This becomes even more problematic with noisy (or speech) input.

A simple solution:
Limit the depth of the brackets and perform OSTIA-DR learning using an output
finite-state “Language Model” that enforces correct bracketing.

0

Σ

1
<

>

Σ

2
<

>

Σ

3
<

>

Σ

4
<

>

Σ

(Σ represents an edge for each word in the output language vocabulary)

The number of states should match the maximum level of embedding allowed.

This can be combined with conventional (e.g., 3-Gram) output Language Models.
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MTA OSTIA-DR/Word-Reordering results
[Vilar, Vidal, Amengual, ECAI-96]

Spanish-English Translation Word Error Rates for the Extended
Feldman’s MTA Task, as a function of the Training Set size.

Test Set: 10,000 5%-distorted independent input sentences.

Train. size Direct Reordered
1,000 44.0% ( 813 / 2023) 17.6% (532 / 1338)
2,000 37.8% (1406 / 3353) 6.2% (358 / 979 )
4,000 25.2% (1686 / 4051) 2.2% (144 / 440 )
8,000 2.7% ( 244 / 719 ) 1.7% (109 / 344 )

16,000 1.7% ( 100 / 363 ) 1.7% ( 63 / 183 )

In brackets, model sizes (states/edges).

. Reordering can reduce the demand for training data by a factor of four
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Universisdad Polit écnica de Valencia, Spain

Finite-State Translation Models based on Alignments

Enrique Vidal

evidal@iti.upv.es

January 2005

E. Vidal – ITI-UPV-DSIC

Pattern Recognition Machine Translation Thechniques based on Alignments

Index

1 Statistical Alignment Models and Finite-State Transducers . 2

2 Alignment-controlled state merging: OMEGA . 5

3 Alignments and bilingual segmentation: GIATI . 12

4 GIATI revisited: pure statistical learning . 24

5 Bibliography . 28

E. Vidal – ITI-UPV-DSIC January 2005 Page 7.1



Pattern Recognition Machine Translation Thechniques based on Alignments

Index

◦ 1 Statistical Alignment Models and Finite-State Transducers . 2

2 Alignment-controlled state merging: OMEGA . 5

3 Alignments and bilingual segmentation: GIATI . 12

4 GIATI revisited: pure statistical learning . 24

5 Bibliography . 28

E. Vidal – ITI-UPV-DSIC January 2005 Page 7.2

Pattern Recognition Machine Translation Thechniques based on Alignments

Statistical alignments and finite-state models

• Finite state transducer learning techniques seem to require large
amounts of training data to produce acceptable results

• Some byproducts of statistical alignment model training can be
useful to improve the learning capabilities of finite state methods:

– Sentence-to-sentence word alignments

– Word-to-word mappings (statistical dictionaries)

[Brown et al. Computational Linguistics, 1990] : Decomposing Pr(x | y)
using bilingual word-position mappings or “alignments” as hidden
variables:

Pr(x | y) =
∑

a∈A(y,x)

Pr(x, a | y)

where, Pr(x, a | y) is mainly modeled by means of position
alignment probabilities, e.g.: Pr(i | j, I, J), and a statistical
dictionary : Pr(xj | yi)
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Statistical alignment models

• Alignments: a ⊆ {1, ..., I} × {1, ..., J}, I = | x |, J = | y |

• Restriction: a : {1, ..., J} → {0, ..., I},

where aj = 0 states that the j-th. position in y is not aligned
with any position in x

Example:

1 2 3 4 5 6
per favore vorrei una camera doppia

I (0) would (3) like (3) a (4) double (6) room (5) please (2)
a1 = 0 a2 = 3 a3 = 3 a4 = 4 a5 = 6 a6 = 5 a7 = 2

per  favore  vorrei  una  camera  doppia

I  would  like a  double  room  please
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Review of OSTIA State-Merging Learning Procedures

• Build an “onward” tree representation of the training data (a tree in which
output strings are as close as possible to the root)

• The traversal of the tree goes in a level by level manner, typically by using a
lexicographical order of state names.

• Two kinds of State Merging:

− Merging based on Local Conditions: involve only the two states under
consideration. Different Local Conditions lead to different algorithms.

− Derived merges: once two states are merged, others may also need to be
recursively merged (with the help of possible output substring “Pushing-
back”) in order to preserve determinism.

• If a cascade of derived merges fails preserving determinism, the original and
all the derived merges are discarded
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Local Conditions for State Merging

• OSTIA: only considers the output of the states: if both outputs are the
same or at least one has no output, the join is possible [Oncina, 91-93].

• OSTIA-DR: also takes into account two Language Models (LM), one
for the Input (or Domain) and one for the Output (or Range): two states
cannot be joined if they correspond to different states of the Input or
Output LMs [Oncina, 94-96].

• OMEGA [Vilar, 98] : also takes into account alignments and word to
word dictionaries.
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The Problem of Premature Output

Assume the following situation in the process of OSTIA learning:

A

F

B

un/a

G

un/a

λ
C

cuadrado/square

D

círculo/large circle λ
E

grande/λ

H

círculo/small circle
λ

I

pequeño/λ

OSTIA would join states C and D, yielding:

A

F

B

un/a

G

un/a

D

cuadrado/square

círculo/large circle

λ
E

grande/λ

H

círculo/small circle λ
I

pequeño/λ

This entails a bad generalisation (un cuadrado grande, a square), and
moreover now A and F could not be joined. This problem can be solved
with a new extension to OSTIA called “OMEGA1”

1For the Spanish “OSTIA Modificado Empleando Garantı́as y Alineamientos” [Vilar,98].
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State Labeling with the help of a Dictionary and/or Alignment

Suposse that a known dicctionary or alignment hints that the translation of grande,
pequeño and cı́rculo should be large, small and circle, respectively. This can be
used for state labelling as follows:

A

F

B

un/a

G

un/a

λ
G={square}

N={}
C

cuadrado/square

G={circle}
N={circle}

D

círculo/λ
λ

G={circle,large}
N={}

E

grande/large circle

G={circle}
N={circle}

H

círculo/λ
λ

G={circle,small}
N={}

I

pequeño/small circle

Now, states C and D cannot be merged, but A and F can, finally yielding:

A B

un/a

λ
G={square}

N={}
C

cuadrado/square

G={circle}
N={circle}

D

círculo/λ

λ
G={circle,large}

N={}
E

grande/large circle

λ
G={circle,small}

N={}
I

pequeño/small circle
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The OMEGA extension to OSTIA
[Vilar, 1998]

• The initial tree is built taking alignments and/or dictionaries into account to
avoid premature output. Each state p is labelled with two sets:

− G(p) representing those words which are “guaranteed”, i.e., they will
appear in the output of any path passing through p.

− N(p) representing those words that “need” to be seen, i.e., those which
have not appeared so far, but which should appear in the translation of at
least one of the paths departing from p.

• Local compatibility rules of OSTIA-DR now further include avoiding the join
of two states p and q if N(p) ∪ N(q) 6⊆ G(p) ∩ G(q).

• N and G can be derived from (probabilistic) dictionaries and/or alignments.

• Input-Output Syntactic Constraints can be applied as in the original version
of OSTIA(-DR).
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OMEGA Learning Results

(Spanish-English experiments; similar for Spanish-German [Vilar,98])

• Data: A subset of Spanish-English EuTrans-I Traveler Task Data

– Created by selecting those sentences with at most ten words
– Test-Set: 588 different sentences, disjoint with training data.

• Training : OMEGA versus OSTIA-DR

– Bigram Input and Output Syntactic Constraints. No Categorization.
– Alignements obtained using the MAR statistical model.

• Search: Error Correcting parsing.

Different Training Pairs OSTIA-DR OMEGA-DR
1,000 27,28 16,51
2,000 19,64 11,17
4,000 11,88 8,33
8,000 8,31 5,57

16,000 5,19 4,16

. Training data demands can be reduced by a factor of 2.
. Results improve using Bilingual Categorization.
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Regular Grammars and finite state transducers:
a morphism theorem

Theorem [Berstel 1979] :

T ⊆ X? × Y ? is a rational translation if and only if there exist an alphabet
Z, a regular language L ⊂ Z? and two morphisms hX : Z? → X? and
hY : Z? → Y ? such that T = {(hX(w), hY (w)) | w ∈ L}

This theorem has suggested the development of a number of transducer
learning techniques, including GIATI [Casacuberta, ICGI-2000]
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Explicit use of statistical alignments for FST learning: GIATI

General idea in three steps:

1. Use sentence-to-sentence word alignments to convert each
training pair (x, y) of input/output sentences from X? × Y ? into
a single training string z over an alphabet of “extended symbols”
Z (composed of pairs of input/output symbols/strings)

2. Use an adequate grammar learning technique (e.g., N-Grams)
to obtain a finite state “language model” for these strings

3. Using the adequate morphisms, convert back each extended
symbol of this model into a pair of input/output symbols/strings.
This effectively transforms the language model into a finite state
transducer

This general method is referred to as

Grammatical Inference and Alignments for Transducer Inference (GIATI)
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GIATI: general training procedure

P ⊂ Σ? ×∆?

A sample of training pairs

Labelling
−→ S ⊂ Γ?

Corresponding extended strings

←
− GI algorithm ←
−

E: P ⊂ T (E)

A finite-state transducer

Inverse labelling
←− G: S ⊂ L(G)

A regular grammar

LEARNING APPROACH:

1. Build a labelled corpus (extended symbols) using statistical alignments.

2. Infer a (stochastic) regular grammars using the labelled corpus.

3. Transform the extended symbols of transitions into input/output symbols.
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GIATI: First step (Example)

USING STATISTICAL ALIGNMENTS TO CONVERT

TRAINING PAIRS INTO TRAINING STRINGS

Training pairs:

una camera doppia → a double room
una camera → a room
la camera singola → the single room
la camera → the room

Aligned sentences:

una camera doppia una camera la camera singola la camera
a (1) double (3) room (2) a (1) room (2) the (1) single (3) room (2) the (1) room (2)

una camera doppia

a double room

una camera

a  room

la camera singola

the single room

la camera

the room
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GIATI: First step: the labelling procedure

Let x, y and a be an input string, an output string and an alignment
function, respectively, z is the labelled string with |z| = |x| and:

For 1 ≤ i ≤ |z|

zi =


xi + yj + yj+1 + ... + yj+l if ∃j : a(j) = i and ¬∃j′ < j : a(j′) > a(j)

and for j′′ : j ≤ j′′ ≤ j + l, a(j′′) ≤ a(j)

xi otherwise

Aligned training pairs: Training strings:

una camera doppia a (1) double (3) room (2) ⇒ una+a camera doppia +double+room
una camera a (1) room (2) ⇒ una+a camera +room
la camera singola the (1) single (3) room (2) ⇒ la+the camera singola +single+room
la camera the (1) room (2) ⇒ la+the camera +room
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GIATI: Second step

FROM TRAINING STRINGS TO GRAMMARS: N-GRAMS

Pr(z) ≈
|z|∏
i=1

Pr(zi|zi−n+1, ..., zi−1)

una+a

la+the

camera

camera+room

doppia+double+room

camera+room

singola+single+roomcamera

PROBLEM: Non-seen events in the training set.

COMMON SOLUTION: Smoothing.
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GIATI: Third step

FROM GRAMMARS TO TRANSDUCERS: INVERSE LABELLING

GRAMMAR TRANSDUCER

(q, a + b1 + b2 + ... + bk, q
′) (q, a, b1b2...bk, q

′)

una/a

la/the

camera/room

doppia/double room

camera/room

singola/single room
camera/ λ

camera/ λ
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GIATI results

With IBM Model 5 alignments and back-off smoothed
n-grams, for the standard corpus EUTRANS-0

(171,481 different training pairs, Vocabularies: 689/514 words)

n states transitions WER (%) SER (%)
2 4,056 67,235 8.8 50.1
3 33,619 173,500 4.7 27.2
4 110,321 364,373 4.1 23.2
5 147,790 492,840 3.8 20.5
6 201,319 663,447 3.6 19.0
7 264,868 857,275 3.4 18.0
8 331,598 1,050,949 3.3 17.4
9 391,812 1,218,367 3.3 17.2

10 438,802 1,345,278 3.2 16.8
11 471,733 1,432,027 3.1 16.4
12 492,620 1,485,370 3.1 16.4
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Comparative experiments: benchmark corpora

EUTRANS-I CORPUS [VIDAL 1997]

Spanish English
Train: Sentences 10,000

Words 97,131 99,292
Vocabulary 686 513

Test: Sentences 2,996
Words 35,023 35,590
Bigram Perplexity 8.6 5.2

Semiautomatically
generated Spanish-
English sentences,
human-to-human
communication at a
reception desk of a
hotel.

EUTRANS-II CORPUS (ITI 2000)

Italian English
Train: Sentences 3,038

Words 55,302 64,176
Vocabulary 2,459 1,712

Test: Sentences 300
Words 6,121 7,243
Bigram Perplexity 31 25

Transcriptions of
Italian-English
spontaneous
sentences,
person-to-person
communication in
the hotel framework.
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OSTIA / OMEGA / GIATI comparative results
[EUTRANS Final Report, 2000], [EUTRANS Deliv.D2.1a , 2000], [Casacuberta, 2002]

Corpus Method Assited by n-grams WER
EUTRANS-I OSTIA ECP 2 8.3
EUTRANS-I OMEGA ECP, IBM2’ 2 6.6
EUTRANS-I GIATI BOS, IBM5 5 6.6
EUTRANS-II OMEGA ECP, IBM2 2 41.7
EUTRANS-II OMEGA ECP, IBM2, ABS 2 36.5
EUTRANS-II GIATI BOS, IBM5 2 28.1
EUTRANS-II GIATI BOS, IBM5, ABS 2 24.9

ECP = Error-Correcting Parsing
BOS = Back-Off Smoothing
ABS = Automatic Bilingual Segmentation
IBMk = IBM Model k statistical alignments
IBM2’ = Symetrized IBM2
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Summary of Stochastic Finite-State MT results

Translation Word Error Rate (TWER %)

Task MLA EUTRANS-0 EUTRANS-I EUTRANS-II TT2-XRCE AMETRA TT2-UE
Languages Sp-En Sp-En Sp-En It-En En-Sp Sp-Ba En-Sp
Vocabularies 30 689/514 689/514 2.5K/1.7K 26K/30K 719/1.3K 84K/97K
Training (words) 110K 4.5M 100K 50K 600K 90K 6M
Year 1993 1996 1998 1999 2004 2003 2004

OSTIA 3 ≈1 - - - - -
OSTIA-DR 1 <1 10 >80 - - -
OMEGA - <1 4 37 - - -
GIATI - 3 7 25 32 40 56

Best result - - 4 25 28 36 47
Non FS system - - AT AT PB PB PB

Languages: English, Spanish, Italian, Basc

PB = Phrase-based alignment models

AT = Alignment Templates
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Pure statistical approach: GIATI revisited

Let Pr(x, y) be the joint probability of a pair of sentences (x, y)

• Let J and I be the given lengths of x and y, respectively.

• Assume that y is segmented into J segments,

µ : {1, ..., J} → {1, ..., I} with µj+1 > µj for 1 ≤ j < J and µJ = I

Further assumptions:

• The distributions that rule I, J and µ are uniform.

• The correspondence among source symbols and target segments
is monotone.

• By using a n-grams approximation with an special “end” symbol $.

Pr(x, y) ∝
∑
K

∑
µK

1

J∏
k=1

Pr(xk, y
µk
µk−1+1|x

k−1
k−n+1, y

µk−1
µk−n+1) · Pr($, $|xJ

J−n+2, y
µJ
µJ−n+2

)
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Pure statistical approach: GIATI revisited

Features:

• Main feature: All possible segmentations of the training set are considered.

• Parameter estimation: E-M algorithm.

• A SFST implementation:

– The states are all possible (xk−1
k−n+1, y

µk−1
µk−n+1

) in the training set;

– The probability of a transition between two states (xk
k−n+2, y

µk
µk−n+2

) and

(xk−1
k−n+1, y

µk−1
µk−n+1

) is Pr(xk, y
µk
µk−1+1|x

k−1
k−n+1, y

µk−1
µk−n+1

) with xk as source symbol

and y
µk−1
µk−n+1

as the target string;

– The probability that (xk−1
k−n+1, y

µk−1
µk−n+1

) of a final state is Pr($, $|xk−1
k−n+1, y

µk−1
µk−n+1

).

• Generalization to arbitrary segmentations of the source sentence.
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Conclusions

• We have thoroughly explored the learning of FST and its applications in MT

• Other contributions in this area: [Knight & Al-Onaizan, 98], [Mäkinen, 99],
[Bangalore, Ricardi et al., 01]

• As task complexity and/or data scarceness increases, it becomes more and
more important to make use of methods borrowed from statistical language
processing.

Particularly relevant: statistical alignments and smoothing techniques

• Making explicit use of these techniques, GIATI is among the most promising
approaches for FST MT

• A new pure statistically based development of GIATI is under way
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Exemple of word alignments

taxi . . . . . ■ . . .
un . . . . ■ . . . .

pı́dame ■ ■ ■ ■ . . . . .
, . . . . . . ■ . .

favor . . . . . . . ■ .
por . . . . . . . ■ .

could
you
ask
for
a taxi
, please
?
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Exemple of word alignments

taxi . . . . . ■ . . .
un . . . . ■ . . . .

pı́dame ■ ■ ■ ■ . . . . .
, . . . . . . ■ . .

favor . . . . . . . ■ .
por . . . . . . . ■ .

could
you
ask
for
a taxi
, please
?

taxi . . . . . ■
un . . . . ■ .

pı́dame ■ ■ ■ ■ . .

could
you
ask
for
a taxi

+

, ■ . .
favor . ■ .
por . ■ .

, please
?

+ INVERSION
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Exemple of word alignments

taxi . . . . . ■
un . . . . ■ .

pı́dame ■ ■ ■ ■ . .

could
you
ask
for
a taxi

pı́dame ■ ■ ■ ■

could
you
ask
for

+
taxi . ■
un ■ .

a taxi

+ DIRECT
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Exemple of word alignments

, ■ . .
favor . ■ .
por . ■ .

, please
?

, ■

,

+
favor ■ .
por ■ .

please
?

+ INVERSION
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Exemple of word alignments

por favor , pídame un taxi # could you ask for a taxi , please ? 

por favor , # , please ? pídame un taxi # could you ask for a taxi 

por favor # please ? , # , pídame # could you ask for un taxi # a taxi 

un # a taxi # taxi 
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Exemple of word alignments
H. Ney, Statistical Natural Language Processing, 2003: Canadian Hansards

? . . . . . . . . . . . . . . . . . . . . ■

proposal . . . . . ■ . . . . . . . . . . . . . . .
new . . . . ■ . . . . . . . . . . . . . . . .
the . . . ■ . . . . . . . . . . . . . . . . .

under ■ ■ ■ . . . . . . . . . . . . . . . . . .
fees . . . . . . . . . . . . . . . . . ■ ■ ■ .

collecting . . . . . . . . . . . . . . . ■ ■ . . . .
and . . . . . . . . . . . . . . ■ . . . . . .

administering . . . . . . . . . . . . . ■ . . . . . . .
of . . . . . . . . . . . . ■ . . . . . . . .

cost . . . . . . . . . . ■ . . . . . . . . . .
anticipated . . . . . . . . . . . ■ . . . . . . . . .

the . . . . . . . . . ■ . . . . . . . . . . .
is . . . . . . . . ■ . . . . . . . . . . . .

What . . . . . . ■ ■ . . . . . . . . . . . . .

E
n

vertu
de les
nouvelles
propositions
, quel
est
le cout
prevu
de adm

inistration
et de perception
de les
droits
?
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Exemple of word alignments

AMETRA corpus

1996 . . ■ . .
de . . ■ . .

marzo . . . ■ .
de . . . ■ .
20 . . . . ■
a . . . . ■
, . ■ . . .

Lemoa ■ . . . .
En ■ . . . .

Lem
oan

, 1996ko
m

artxoaren
20an
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Exemple of word alignments

METEO corpus

sud . . . . . . . ■
meitat . . . . . . ■ .
seva . . . . . ■ . .

la . . . . . . . .
en . . . . ■ . . .

Llevant . . . ■ . . . .
de . . ■. . . . . .
des . . ■ . . . . .

sobretot ■ ■ . . . . . .

sobre
todo

desde

Levante
en su m

itad
sur
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A Recursive Alignment Model: MAR

MAR =(Recursive Alignment Model)−1

J.M. Vilar: Aprendizaje de transductores subsecuenciales para
su empleo en tareas de dominio restringido. PhD thesis, UPV.
1998.

∗The slides on MAR are modified versions of some material supplied by J.M. Vilar.
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A Recursive Alignment Model: MAR

• Accounts for differences in word order between languages.

• Assumes hierarchical structured alignments.

• The alignments obtained are particularly adequate to be
used in combination with finite-state techniques:

Allow to use automatically obtained short phrases (rather
than words) for:

• Bilingual clustering.
• Reordering of source-target pairs.
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MAR’s generative process

The translation of a sentence segment can be decomposed in:

1. Decide whether MAR or IBM has to be used. If IBM is
chosen, the segment is translated by it and the process
ends.

2. If MAR is used, the sentence is divided in two segments.

3. Each segment is recursively translated
(hence the name: (Recursive Alignment Model)−1).

4. The resulting translations are concatenated in the original or
in the inverse order.
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A simple example

Leaves are labelled by J = |x|, I = |y|, while internal nodes are
labelled by J, b, d : 1 ≤ b ≤ J = |x|, d ∈ {D, I}, where b is the
cut-point of x and D, I indicate that the source-target segments
are “Directly” or “Inversely” aligned, respectively.

un círculo grande y claro
a large light circle

  

un
a

círculo grande y claro
large light circle

  

círculo
circle

grande y claro
large light
  

grande y
large

claro
light

m b d

 5 1 D  

1 1  4 1 I  

1 1  3 2 D  

2 1 1 1
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Formal derivation
First, approximate the translation probability by

Pr(y|x) ≈ PM(y|x)

= Pr(M = IBM|x) · PM1(y|x)

+ Pr(M = MAR|x) · PMAR(y|x)

PM1(y|x) is given by IBM-1; PMAR(y|x) can be written as:

PMAR(y|x) =
J−1∑
b=1

Pr(b|x)

·
∑

d∈{D,R}

Pr(d|b, x)

·
I−1∑
c=1

Pr(yc
1|b, d, x) Pr(yI

c+1|b, d, x, yc
1)
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Simplifications
1. The choice of the model depends only on the length of the source sentence:

Pr(M = IBM|x) ≈M1(J) Pr(M = MAR|x) ≈MM(J)

2. The place for the boundary depends only of the two words adjacent to it:

Pr(b|x) ≈ B(xb, xb+1)∑J−1
i=1 B(xi, xi+1)

3. The direction of the concatenation depends on these two words:

Pr(d = D|b, x) ≈ DD(xb, xb+1) Pr(d = R|b, x) ≈ DR(xb, xb+1)

4. The translations of the two halves are independent:

Pr(yc
1|b, d, x) ≈

{
PM(yc

1|xb
1) if d = D

PM(yc
1|xJ

b+1) if d = R

Pr(yI
c+1|b, d, x, yc

1) ≈

{
PM(yI

c+1|xJ
b+1) if d = D

PM(yI
c+1|xb

1) if d = R
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Final form of MAR
J.M.Vilar Aprendizaje de transductores subsecuenciales. PhD thesis, UPV. 1998.

Pr(y | x) ≈ PM(y|x)

= M1(J) · PM1(y|x)

+ MM(J)
J−1∑
b=1

B(xb, xb+1)∑J−1
i=1 B(xi, xi+1)

·
(
DD(xb, xb+1)

I−1∑
c=1

pT (yc
1|xb

1) · PM(yI
c+1|xJ

b+1)

+DI(xb, xb+1)
I−1∑
c=1

pT (yI
c+1|xb

1) · PM(yc
1|xJ

b+1)
)

where PM1(y|x) =
n(J | I)

JI

I∏
j=1

J∑
i=1

l(yj|xi) corresponds to IBM-1 model.
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Parameter estimation

Maximum Likelihood criterion: Given a sample of example pairs, A, find
model parameter values such that the likelihood of A is maximum. That is,
find the maximum of:

LA =
∏

(x,y)∈A

PM(y|x)

This can be (locally optimally) solved through Expectation Maximization.
Baum Eagon’s inequality is used to estimate all the parameters, except for
the Bs which are reestimated using Gopalakrishnan’s.
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Parameter estimation: “polynomial” and “rational parameters”

Let p be a parameter such that L is polinomial with p and let F(p) be all the other
parameters related with p (i.e.:

∑
q∈F(p) q = 1). A reestimated value of p, T (p)

([Baum & Eagon , 1968]):

T (p)) =
p

∂L
∂p∑

q∈F(p)

q
∂L
∂q

=

p
∑

(x,y)∈A

(PM(y | x))−1 ∂PM(y | x)
∂p∑

q∈F(p)

q
∑

(x,y)∈A

(PM(y | x))−1 ∂PM(y | x)
∂q

Let p be a parameter such that L is rational with p and let F(p) be all the other
parameters related with p (i.e.:

∑
q∈F(p) q = 1). A reestimated value of p, T (p)

([Gopalakrishnan et al ,1991]):

T (p)) =
p

∂L
∂p

+ C∑
q∈F(p)

q
∂L
∂q

+ C

=

p
∑

(x,y)∈A

(PM(y | x))−1 ∂PM(y | x)
∂p

+ C

∑
q∈F(p)

q
∑

(x,y)∈A

(PM(y | x))−1 ∂PM(y | x)
∂q

+
∑

q∈F(p)

C
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Derivative of MAR probabilities

• Let m be a fixed source sentence length. MI(m) provides the probability of choosing
the IBM-1 model, given m: ∂PM(y|x)/∂M1(m)

• Let m be a fixed source sentence length. MM(m) provides the probability of choosing
the MAR model, given m: ∂PM(y|x)/∂MM(m)

• Let x, x′ be two fixed source words. B(x, x′) accounts for the probability of placing a
boundary point between x and x′: ∂PM(y|x)/∂B(x, x′)

• Let x, x′ be two fixed source words. DD(x, x′) provides the probability of choosing a
Direct alignment: ∂pT (y|x)/∂DD(x, x′)

• Let x, x′ be two fixed source words. DR(x, x′) provides the probability of choosing an
Inverse alignment: ∂pT (y|x)/∂DR(x, x′)

• Let m,n be fixed lengths of source/target sentences. n(m | n) accounts for the length
distribution of IBM-1 model: ∂PM(y|x)/∂n(m | n)

• Let x, y be fixed source/target words. l(y|x) determines the probability that y be a
translation of x: ∂PM(y|x)/∂l(y|x)
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Parameter estimation: Details and simplifications

• 10 Expectation Maximization iterations with neutral initialization.

• The value of MI(l) set to 0 for l > 4.

• The value of n(l,m) is not estimated for l or m greater than four.

• The values of l(x|y) are not estimated for pairs with l(x|y) < 10−5.

The resulting estimation algorithm has polinomial time complexity,
though it still is very computationally intensive.
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Results: Training perplexity evolution

Training set perplexity computed as:

PP = m

√ ∏
(x,y)∈S

(
PM(y|x)

)−1
, m =

∑
(x,y)∈S

I.

English German
Iteration 1, 000 32, 000 1, 000 30, 000

0 506.05 625.79 558.24 703.76
1 23.10 24.52 23.61 25.88
2 8.78 8.33 10.61 10.31
3 5.07 4.90 6.26 6.19
4 3.98 3.89 4.80 4.85
5 3.45 3.40 4.12 4.16
6 3.19 3.22 3.74 3.82
7 3.08 3.09 3.51 3.58
8 3.01 3.06 3.38 3.45

Convergence is achieved after a moderate number of iterations.
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Spanish-English MAR alignment
deseo reservar dos habitaciones para tres dı́as.
I want to book two rooms for three days.

deseo reservar dos habitaciones
I want to book two rooms

deseo reservar
I want to book

deseo
I want
reservar
to book

dos habitaciones
two rooms

dos
two
habitaciones
rooms

para tres dı́as.
for three days.

para tres
for three

para
for
tres
three

dı́as.
days.

dı́as
days
.
.
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Spanish-English MAR alignment
deseo una habitación con televisión para esta noche.
I want a room with a tv for tonight.

deseo una habitación con
I want a room with

deseo una
I want a

deseo
I want
una
a

habitación con
room with

habitación
room
con
with

televisión para esta noche.
a tv for tonight.

televisión para
a tv for

televisión
a tv
para
for

esta noche.
tonight.

esta noche
tonight
.
.
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Spanish-English MAR alignment
¿podrı́amos pagar el recibo con cheques de viaje?
could we pay the bill by traveler check?

¿podrı́amos pagar el
could we pay the

¿podrı́amos
could we

’?
could
podrı́amos
we

pagar el
pay the

pagar
pay
el
the

recibo con cheques de viaje?
bill by traveler check?

recibo con cheques
bill by traveler check

recibo con
bill by

recibo
bill
con
by

cheques
traveler check

de viaje?
?
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Spanish-German MAR alignment
¿nos llama a nuestro taxi, por favor?
würden Sie unser Taxi besstellen, bitte?

¿nos llama a nuestro taxi
würden Sie unser Taxi besstellen

¿nos
würden Sie

’?
Sie
nos
würden

llama a nuestro taxi
unser Taxi besstellen

llama a
besstellen
nuestro taxi
unser Taxi

nuestro
unser
taxi
Taxi

, por favor?
, bitte?

, por
,
favor?
bitte?

favor
bitte
?
?
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Spanish-German MAR alignment
¿podrı́a prepararnos la factura?
könnten Sie die Rechnung ausstellen, bitte?

¿podrı́a prepararnos la
könnten Sie die Rechnung ausstellen

¿podrı́a
könnten Sie

’?
Sie
podrı́a
könnten

prepararnos la
die Rechnung ausstellen

prepararnos
Rechnung ausstellen
la
die

factura?
, bitte?

factura
, bitte
?
?
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A simplified recursive alignment model
H. Ney, Statistical Natural Language Processing, STC Doctorate Program, UPC. 2003

Pr(y, x) ≈
∑
i,j

(
α · Pr(yi

1, xj
1) · Pr(yI

i+1, xJ
j+1) + (1− α) · Pr(yi

1, xJ
j+1) · Pr(yI

i+1, xj
1)

)

Searching using a bigram target language model and a maximum approach:

Q(j, j′, y, y′) =

max
y′′,y′′′

 
p2(y

′′′ | y
′′
) · max

j′′

“
α · Q(j, j

′′
, y, y

′′
) · Q(j

′′
+ 1, j

′
, y

′′′
, y

′
), (1 − α) · Q(j, j

′′
, y

′′′
, y

′
) · Q(j

′′
+ 1, j

′
, y, y

′′
)
”!

1 Jj j’

t t’

j’’

t’’ t’’’

j’’+1
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Stochastic inversion transduction grammars

D. Wu: Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora. Comp. Ling. 1997.

A context-free based approach to bilingual segmentation

For a non-terminal symbol A,B and C and for any source word s and any target word t,

A → 〈B,C〉
A → [B,C]

A → x/y

A → x/λ

A → λ/y
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An example

S → [A,B]

A → x1/y1

B → 〈C,D〉
C → x2/y2

D → x3/y3

S

A B

x /y 1  1 C D

x /y 2  2 x /y 3  3

x1 x2 x3 =⇒ y1 y3 y2
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Stochastic inversion transduction grammars

• Learning:

• Adapted context-free grammatical inference
• Inside-outside estimation

• Translation:

• Adapted Cooker-Younger-Kasami parser algorithm
• Inside or outside algorithms
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Recursive Bilingual Alignments

An alignment between phrases of a source sentence and phrases of a target sentence.

• It represents the translation relations between two sentences.

• It also includes information about the possible reorderings needed in order to
generate the target sentence from the source sentence.

• Representation: binary tree.

• The inner nodes store the reordering directions.

• The leaf nodes store the translation relations.

∗The slides on RBA are modified versions of some material supplied by F. Nevado.
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An example

garatzeko . . . . ■ ■ . . . . . . .
ikastoletan . . . . . . . . . . ■ ■ ■

irakasgaia . . . . . . ■ ■ . . . . .
informatika . . . . . . . . ■ ■ . . .

teknikoa . . . ■ . . . . . . . . .
eta . . ■ . . . . . . . . . .

didaktoa . ■ . . . . . . . . . . .
Prestakuntza ■ . . . . . . . . . . . .

F
orm

ación
didáctica
y técnica
para
desarrollar
la asignatura
de inform

ática
en las
ikastolas
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An example

Prestakuntza didaktoa eta teknikoa informatika irakasgaia ikastoletan garatzeko
Formación didáctica y técnica para desarrollar la asignatura de informática en las ikastolas

DIRECT

Prestakuntza didaktoa eta teknikoa / Formacion didactica y tecnica

informatika irakasgaia ikastoletan garatzeko / para desarrollar la asignatura de informatica en las ikastolas
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An example

Prestakuntza didaktoa eta teknikoa informatika irakasgaia ikastoletan garatzeko
Formación didáctica y técnica para desarrollar la asignatura de informática en las ikastolas

Prestakuntza didaktikoa eta teknikoa | Formacion didactica y tecnica

DIRECT

INVERSE

informatika irakasgaia ikastoletan / la asignatura de informatica en las ikastolas

garatzeko / para desarrollar
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An example

Prestakuntza didaktoa eta teknikoa informatika irakasgaia ikastoletan garatzeko
Formación didáctica y técnica para desarrollar la asignatura de informática en las ikastolas

DIRECT

Prestakuntza didaktikoa eta teknikoa | Formacion didactica y tecnica INVERSE

DIRECT garatzeko | para desarrollar

informatica irakasgaia | la asignatura de informatica ikastoletan | en las ikastolas
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Greedy bilingual recursive alignment

Pr(y, x) ≈ max
i,j

(
α · Pr(yi

1, xj
1) · Pr(yI

i+1, xJ
j+1) + (1− α) · Pr(yi

1, xJ
j+1) · Pr(yI

i+1, xj
1)

)

• α = 0.5

• Pr(yi′
i , xj′

j ) ≈ PM1(yi′
i , xj′

j )

(̂i, ĵ) = argmax
i,j

{
max

(
PM1(yi

1, xj
1) · PM1(yI

i+1, xJ
j+1), PM1(yi

1, xJ
j+1) · PM1(yI

i+1, xj
1)

)}
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Recalign algorithm

A greedy algorithm to compute recursive alignments from a bilingual corpus.

Probability of translating a source phrase into a target phrase −→ Model 1.

Algorithm :

1. Given x and y, it computes the most probable breakpoint in each sentence using
Model 1.

2. If the translation probability for x and y is higher than the translation probability of
dividing them:

• It creates a leaf node where the output sequence is considered to be the translation
of the input sequence.

Else:

• It creates a new inner node of the tree.
• Apply recursively the algorithm to the left and the right children.
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Recalign: variants

• To control the medium length of the generated segments

=⇒ Combine the translation probabilities with a distribution over the sequences
lentgh: LEN modification.

• Model 1 can obtain imprecise divisions

=⇒ Only allow divisions that are compatible with a word alignment: ALI restriction.

• Source-to-target (Target-to-source).
• Symmetrization: union, intersection, refined.
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Corpus description

EUTRANS-I English-Spanish DFB Basque-Spanish

Training: Training:

English Spanish
Sentences 12,960
Words 134,435 131,707
Vocabulary 514 688

Basque Spanish
Sentences 284,842
Words 4,203,117 5,661,564
Vocabulary 144,670 62,412

Test: Test:

English Spanish
Sentences 40
Words 487 491
Vocabulary 126 149
Trigram Perplexity 3.6 4.6

Basque Spanish
Sentences 20
Words 481 609
Vocabulary 342 311
Trigram Perplexity 776.3 135.4
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Assessment

Given a segmentation S produced by a system and given a reference
segmentation Sr produced by an expert,

• Recall : Number of bilingual segments that are correct with respect to the
number of references:

Recall =
S ∪ Sr

Sr

• Precision: Number of bilingual segments that are correct with respect to the
number of bilingual segments supplied by the system:

Precision =
S ∪ Sr

S

• F-measure:
F −measure =

2 ·Recall · Precision

Recall + Precision
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Results: Eutrans-I (Spanish-to-English)

Bilingual segmentation Recall Precision F-measure
GIATI-labelling 39.22 87.96 54.25
Recalign 37.23 87.10 52.16
Recalign + LEN 76.86 72.00 74.35
Recalign + ALI(S-E) 40.01 87.12 54.84
Recalign + ALI(S-E) + LEN 77.38 71.78 74.48
Recalign + ALI(∪) 52.21 82.41 63.92
Recalign + ALI(∪) + LEN 81.63 67.52 73.91
Recalign + ALI(∩) 38.20 86.57 53.01
Recalign + ALI(∩) + LEN 76.86 72.00 74.35
Recalign + ALI(ref) 49.14 84.28 62.08
Recalign + ALI(ref) + LEN 81.17 68.37 74.22
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Results: DFB (Spanish-to-Basque)

Bilingual segmentation Recall Precision F-measure
GIATI-labelling 63.16 39.13 48.32
Recalign 75.00 24.21 36.61
Recalign + LEN 65.03 36.46 46.73
Recalign + ALI(S-B) 78.26 24.08 36.83
Recalign + ALI(S-B) + LEN 79.07 24.66 37.60
Recalign + ALI(∪) 92.16 14.69 25.34
Recalign + ALI(∪) + LEN 93.37 14.88 25.66
Recalign + ALI(∩) 76.77 24.29 36.91
Recalign + ALI(∩) + LEN 74.09 34.01 46.62
Recalign + ALI(ref) 84.54 21.21 33.91
Recalign + ALI(ref) + LEN 83.49 30.58 44.76

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 8: 46

Pattern Recognition approaches to Machine Translation Recursive Alignment Models

Index

1 Introduction . 2

2 A recursive alignment model: MAR . 11

3 Stochastic inversion transduction grammar . 30

4 Bilingual Recursive Alignments . 34

◦ 5 Bibliography . 47

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 8: 47



Pattern Recognition approaches to Machine Translation Recursive Alignment Models

Bibliography

1. H. Ney: Statistical Natural Language Processing. STC Doctorate Program, UPC. 2003
2. F. Nevado, F. Casacuberta and E. Vidal: Parallel corpora segmentation by using anchor words. EACL

2003 workshop on EAMT, Budapest, Hungary, 2003.
3. F. Nevado, F. Casacuberta and J. Landa: Translation memories enrichment by statistical bilingual

segmentation. IV International Conference on Language Resources and Evaluation - LREC2004,
335-338, Lisbon, 2004.

4. F. Nevado and F. Casacuberta: Bilingual corpora segmentation using bilingual recursive alignments.
III Jornadas en Tecnologı́as del Habla, 3JTH, Valencia, 2004.

5. J.M. Vilar: Aprendizaje de transductores subsecuenciales para su empleo en tareas de dominio
restringido. PhD thesis, UPV. 1998.

6. D. Wu: A polynomial-time algorithm for statistical machine translation. Annual Meeting of the ACL
archive Proceedings of the 34th conference on Association for Computational Linguistics. Santa Cruz,
California. 1996.

7. D. Wu: Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora.
Computational Linguisctics. 23(3): 377-403. 1997.

8. D. Wu and H. Wong: Machine Translation with a Stochastic Grammatical Channel. Proc. of the 17th
international conference on Computational linguistics. Montreal, Quebec, Canada, 1998.

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 8: 48



Seminars on Formal Syntax and Semantics
Universitat Rovira i Virgili

Pattern Recognition Approaches to Machine Translation
E. Vidal and F. Casacuberta

Pattern Recognition and Human Language Technology Group

Departament de Sistemes Inform àtics i Computaci ó
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An utterance

/por favor, quiero reservar una habitaci ón doble hasta pasado ma ñana/
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Speech technologies

• Speech synthesis: From text to speech

• Speaker recognition/verification: From speech to the speaker identity.

• Dictation: From speech to text.

• Speech summarization: From speech to text.

• Speech categorization: From speech to simple semantic classes.

• Speech understanding: From speech to “semantic” information.

• Dialog processing: From speech to “semantic” information through complex
interactions.

• Speech translation: From speech to speech.
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Speech recognition, understanding and translation

SPEECH RECOGNITION :

por favor , quiero reservar una habitación doble hasta pasado mañana .

SPEECH UNDERSTANDING:

(ACTION=RESERVATION) (ROOM TYPE=DOUBLE)
(DATE OF ENTRANCE=TODAY) (DATE OF LEAVING=TODAY+2)

SPEECH TRANSLATION:

I want to book a double room until the day after tomorrow, please.
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Some speech characteristics

• There are not clear separation between two adjancent words

• The words can be uttered in different ways (also by the same speaker)

• Noise and distortion.

• A speech sentence can not be well formed (gramatically)
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Statistical framework for speech recognition

Given an acoustic sequence v, search for the sentence x̂:

x̂ = argmax
x

Pr(x | v)

Using the Bayes’ rule

x̂ = argmax
x

Pr(x) · Pr(v | x)

STATISTICAL MODELS FOR SPEECH RECOGNITION

• Pr(v | x): Acoustic models (HIDDEN MARKOV MODELS)

• Pr(x): Language model (N-GRAMS or STOCHASTIC GRAMMARS)
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Speech preprocessing

UTERANCE

FFT

XWINDOW

FFT

X

FFT 

X X

 MEL FILTERS LOG

DCT

VECTORS OF
ACOUSTIC
FEATURES

∆

∆
2

∆
0

LOG

DCT

∆

∆
2

∆
0

...

...
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Acoustic units

• Words :

– Include contextual information (coarticulation).
– Too many units ⇒ difficult training.

• Phoneme :

– Context dependent (alophons).
– Few units ⇒ easy training.

• Compromise:

– Adequate number of units.
– With some coarticulation information.
– Proposals: sylabes, semi-sylabes, diphones, contextual phones, ...
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Hidden Markov models (HMM)

1 6
HIDDEN
MARKOV
MODEL
M

2 3 4 5
a12

a22

a23

a33 a44
a55

a34
a56

a24
a35

a45

b  (x  )
  2   1SEQUENCE OF

ACOUSTIC
FEATURE 
VECTORS 

X

b  (x  )
  2   2 b  (x  )

  2   3
b  (x  )
  3   4

b  (x  )
  3   5

b  (x  )
  4   6 b  (x  )

  4   7
b  (x  )
  4   8

b  (x  )
  5   9

b  (x   )
  5   10

x
    1 x

    2
x

    3
x

    4
x

    5
x

    6 x
    7

x
    8

x
    9

x
     10

a1,2 · b2(x1) · a2,2 · b2(x2) · a2,2 · b2(x3) · a2,3 · b3(x4) · a3,3 · b3(x5)·
a3,4 · b4(x6) · a4,4 · b4(x7) · a4,4 · b4(x8) · a4,5 · b5(x9) · a5,5 · b5(x10) · a5,6
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Hidden Markov models (HMM)

• Components of a HMM M =< Q,E, a, π, b >

– Topology: Q: set of states. E(= <d): space of acoustic features.
– Probabilistic distributions:
∗ between states (a : Q×Q → [0, 1]),
∗ initial state (π : Q → [0, 1])
∗ emision (density) (b : Q× E → [0, 1]).

• Decoding algorithms: Forward and Backward.

• An approximation: Viterbi (+ Beam Search + Histogram Pruning).

• Training algorithms:

– Maximum likelihood Baum-Welch, Viterbi.
– Other criteria: Maximum mutual information, minimun discriminative information,

discriminative.
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Training hidden Markov models

M/l/ M/m/ M/e/M/a/

A TRAINING SAMPLE

SENTENCE:
 

/la mesa es roja/ 

UTERANCE: A sequence of acoustic feature vectors

M/s/ M/e/ M/s/M/a/ M/r/ M/j/ M/a/M/o/

BAUM-WELCH OR
VITERBI ALGORITHMS

ACOUSTIC-PHONETIC
MODELS
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Word acoustic models

Concatenation of phone units.

L M R

/atar/

/a/ /t/ /a/ /r/

L M R L M R L M R

M
/a/

M
/a/

M
/r/M

/t/
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Language models

Pr(y) =
I∏

i=1

Pr(yi | yi−1
1 )

• Stochastic grammars G = (N,Σ, R, S, p).

Pr(y) ≈ PG(y) =
∑
d(y)

PG(d(y)) ≈ max
d(y)

PG(d(y))

• N-grams

Pr(y) ≈
I∏

i=1

pn(yi | yi−1
i−n+1)

• Learning:
– Grammatical inference techniques.
– Maximum likelihood, maximum entropy.
– Smoothing.
– Extensions: categories, cache, triggers, etc.

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 9: 15



Pattern Recognition approaches to Machine Translation Speech-to-speech translation

Integrated architecture for speech recognition

x

Search

Language
model

argmax P(s) P(x | s)
      s          

V

Utterance Decoding

Integrated
network

Acoustic
models

P(x | s) P(s)

s

Search engine:
THE VITERBI ALGORITHM (+ beam search + ...)

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 9: 16

Pattern Recognition approaches to Machine Translation Speech-to-speech translation

Integrated architecture for speech decoding

LANGUAGE MODEL

0 1<INI> (1)
6una (0.5)

2
la (0.5)

3

bolsa (1)

bolsa (1)

7verde (0.2)

4
grande (0.8) 5

<FIN> (1)

<FIN> (1)

ACOUSTIC MODELS

〈INI〉 〈FIN〉 la una

bolsa grande verde

INTEGRATED MODEL

SIL

una

la
bolsa

verde SIL

grande
SIL

bolsa
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An example of speech decoding

SIL

una

la
bolsa

verde
SIL

grande
SIL

bolsa

Acoustic
sequence

<INI>

una

la

bolsa

bolsa

verde

grande

<FIN>

<FIN>

argmax
x

(Pr(x) · Pr(v |x))

≈ “una bolsa verde”
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General statistical framework for speech translation
Given an acoustic sequence v, search for the target sentence ŷ:

ŷ = argmax
y

Pr(y | v)

The translation can be viewed as:

v −→ x −→ y

where x is a possible decoding of v, and y is the translation of x.

argmax
y

∑
x

Pr(y, x | v) ≈ argmax
y

max
x

Pr(y, x | v)
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Statistical framework for speech translation

argmax
y

max
x

Pr(y, x | v) = argmax
y

max
x

(Pr(x, y) · Pr(v | x))

• Pr(v|x): Acoustic models

– HIDDEN MARKOV MODELS

• Pr(x, y): Translation models

– STOCHASTIC FINITE-STATE TRANSDUCERS

INTEGRATED ARCHITECTURE TO SPEECH TRANSLATION.
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Integrated architecture for speech translation

x

Search

Translation
models

argmax max P(s,t) P(x | s)
      t          s

V

Utterance Target
sentence

Integrated
network

Acoustic
models

Pr(x | s) P(s,t)

t

Search engine:
THE VITERBI ALGORITHM (+ beam search + ...)
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Integrated architecture for speech translation

ORIGINAL FINITE-STATE TRANSDUCER

0 1
la / the

2maleta / λ

3
bolsa / λ

4

azul / blue suitcase

azul / blue bag

ACOUSTIC MODELS

la maleta bolsa azul

PHONETIC EXPANSION

0 1the
2""

3""
4

blue suitcase

blue bag
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An example of speech translation

0
1

the
2

""

3
""

4

blue suitcase

blue bag

Acoustic
sequence

la

maleta

bolsa

azul

azul

the

""

blue suitcase

argmaxy,x Pr(v | x) · Pr(y, x) ≈“the blue suitcase / la maleta azul”
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Statistical framework for speech translation

argmax
y

max
x

Pr(y, x | v) = argmax
y

max
x

(Pr(y | x) · Pr(x) · Pr(v | x))

• Pr(v|x): Acoustic models

– HIDDEN MARKOV MODELS

• Pr(x): Source language models

– N -GRAMS

• Pr(y | x): Translation models

– STOCHASTIC FINITE-STATE TRANSDUCERS

– STATISTICAL ALIGNMENT MODELS +
STOCHASTIC DICTIONARIES

SERIAL ARCHITECTURE TO SPEECH TRANSLATION.

F. Casacuberta – DSIC-ITI-UPV 24-28 January 2005 9: 25



Pattern Recognition approaches to Machine Translation Speech-to-speech translation

Serial architecture for speech translation

argmax
y

max
x

{Pr(y|x) · Pr(x) · Pr(v|x)}

1. Word decoding of v.

x̂ = argmax
x

{Pr(x) · Pr(v |x)}

Pr(x): source language model; Pr(v |x): acoustic models.

2. Translation of x̂.

ŷ = argmax
y

Pr(y | x̂) = argmax
y

Pr(y, x̂) = argmax
y

Pr(x̂ | y) · Pr(y)

Pr(y, x̂) or Pr(x̂ | y): translation model; Pr(y): target language model.
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Serial architecture for speech translation

x

s

targmax P(x|s)P(s)
  s

argmax P(s,t)
  s

v

v

Decoded
source
sentence

Utterance
Target
sentence

Acoustic
models

P(x|s)

P(s,t)

TranslationDecoding

Integrated
model

Source 
language
model

P(s)
Translation

model

Search engine for decoding and text translation:
THE VITERBI ALGORITHM (+ beam search + ...)
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Experimental results with EUTRANS-0 (Spanish to English)

• Vocabulary: 686 Spanish words and 513 Englih words.

• Text training: 490,000 pairs (4,655,000/4,802,000 running words)

• Speech training: 11,000 running words for 25 CDHMM of monophones.

• Speech test: 336 sentences (3,000 running words) (PP=6.8)

• Source language models for the serial architecture: trigrams.

Models Architecture Source Language Model WER(%) TWER(%)
OMEGA Integrated OMEGA 8.4 7.6
OMEGA Serial Trigrams 8.6 9.4
GIATI Integrated GIATI 7.5 10.7
GIATI Serial Trigrams 8.6 11.6
ALTEMP Serial Trigrams 8.6 9.9
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Experimental results with EUTRANS-II (Italian to English)

• Vocabulary: 2,459 Italian words and 1,701 Englih words.

• Text training: 3,038 pairs ( 61,232/72,446 running words)

• Speech training: 52,511 running words for 2,700 CDHMM of triphones.

• Speech test: 278 sentences (5,381 running words) (PP=6.8)

• Source language models for the serial architecture: trigrams.

Models Architecture Source Language Model WER(%) TWER(%)
GIATI Serial Trigrams 22.1 37.9
GIATI Integrated GIATI 32.0 44.8
OMEGA Serial Trigrams 22.1 49.4
OMEGA Integrated OMEGA 52.5 57.0
ALTEMP Serial Trigrams 22.1 37.8
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Iterative search (1)

argmax
y

Pr(y | v) ≈ argmax
y

max
x

Pr(y) · Pr(x | y) · Pr(v | x)

a) INITIALIZATION

1. Decoding v: x̂ ≈ argmax
x

{Pr(x) · Pr(v |x)}

2. Translating x̂: ŷ ≈ argmax
y

Pr(x̂|y) · Pr(y)

b) GENERAL ITERATION

1. Decoding v using ŷ: x̂ ≈ argmax
x

{Pr(x | ŷ) · Pr(v |x)}

2. Translating x̂: ŷ ≈ argmax
y

Pr(x̂|y) · Pr(y)
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Iterative search (2)

x

s

argmax Pr(x|s)Pr(s)
  s

v

 Decoded
source
sentence

Acoustic
sequence

Acoustic
models

Pr(x|e)

Decoding 

Modelo
integrado

Source
language
model

Pr(e|s)

t
argmax Pr(s|t)Pr(t)
   t

v

Target
sentence

Alignment
models and

dictionaries
P(e|s)

Translation

Target
language
model
P(s)
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EUTRANS demos

On-line demos
http://prhltdemos.iti.es/demo/
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Introduction to Computer Assited Translation (CAT)

• MT systems are not perfect: they often produce erroneous
(portions) of target-language text

• To correct these errors, human post-processing is generally
needed

• CAT aims to increase the overall (MT + human) productivity by
incorporating human correction activities within the translation
process itself

Main idea:
Iterative process where human activity is embedded in the loop

• Use a MT system to produce target text segments that can be
accepted or amended by a human translator; these correct(ed)
segments are then used by the MT system as additional
information to achieve further, hopefully improved suggestions
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CAT Human-Machine (keyboard) interactive process

• In each iteration, a correct prefix (yp) of the target sentence is available and the
CAT system computes its best (or N -best) translation suffix hypothesis (ŷs) to
complete this prefix.

• Given ypŷs, the CAT cycle proceeds by letting the user establish a new, longer
acceptable prefix.

This prefix is typically formed by yp, followed by an initial part of ŷs accpted by
the user (a), followed by text obtained by means of additional user keystrokes
(k) generally aimed to amend remaining incorrect parts of ŷs.

This prefix becomes a new yp, thereby starting a new CAT prediction cycle

• Ergonomics and user preferences dictate exactly when the system can start its
new cycle, but typically, it is started after each user-entered word or even after
each new user keystroke.

• These ideas were studied in [Foster02] and have been throughly explored in
the TT2 project
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CAT human-machine (keyboard) interactive process: example

Translating the source sentence “Click OK to close the print dialog” into Spanish:

ITER-0 (yp) ( )

ITER-1

(ŷs) (Haga clic para cerrar el diálogo de impresión)

(a) (Haga clic)

(k) (en)

(yp) (Haga clic en)

ITER-2

(ŷs) (ACEPTAR para cerrar el diálogo de impresión)

(a) (ACEPTAR para cerrar el)

(k) (cuadro )

(yp) (Haga clic en ACEPTAR para cerrar el cuadro)

FINAL
(ŷs) (de diálogo de impresión)

(a) (de diálogo de impresión)

(k) (#)

(yp ≡ y) (Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión)

System suggestions are printed in cursive and user input in boldface typewriter font.

In the final translation, y, text that have been typed by the user is underlined
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Evaluating MT and CAT systems

THREE MEASURES

• TRANSLATION WORD ERROR RATE (TWER):
Minimum number of word insertions, deletions and
substitutions needed to edit the system output into a (single)
target reference

• TRANSLATION CHARACTER ERROR RATE (TWER):
Minimum number of character insertions, deletions and
substitutions needed to edit the system output into a (single)
target reference

• KEY-STROKE RATIO (KSR):
Number of key-strokes that are necessary to achieve a (single)
target reference divided by the number of running characters.

E. Vidal – ITI-UPV-DSIC January 2005 Page 10.6

Pattern Recognition Machine Translation Computer Assisted Translation

Index

1 Computer Assited Translation (CAT) . 2

◦ 2 Statistical Framework for (text-input) CAT . 7

3 Interactive Search . 9

4 Using Speech in the CAT Framework . 22

5 Bibliography . 31

E. Vidal – ITI-UPV-DSIC January 2005 Page 10.7



Pattern Recognition Machine Translation Computer Assisted Translation

Text prediction for Computer-Assisted Translation (CAT)

Given a source text x and a “correct” prefix yp of the target text, search for
a suffix ŷs, that maximizes the posterior probability over all possible sufixes:

ŷs = argmax
ys

Pr(ys | x, yp)

Taking into account that Pr(yp|x) does not depend on ys, we can write:

ŷs = argmax
ys

Pr(ypys | x)

= argmax
ys

Pr(x | ypys) · Pr(ypys) (1)

= argmax
ys

Pr(x, ypys) (2)

• (1): Statistical Alignment and Language models

• (2) Stochastic Finite State Transducers

• Text-input MT is a paricular case, where yp = λ

• Main difference of CAT vs. MT: search over the set of suffixes
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CAT Interactive Search

High speed is needed because typically a new system hypothesis
must be produced in real time after each user keystroke

WORD-GRAPH BASED APPROACH:

• For each source sentence, a graph representing all its possible
translations according to the translation model is generated

• In each CAT iteration, the Word-Graph is searched for a best
path compatible with the prefix given in this iteration

• Error-Correcting smoothing (edit distance) is used to allow for
user-given prefixes that may not exist in the Word-Graph

• Computation is carried out in an incremental manner: in each
iteration the results from the previous iteration are updated
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Example of CAT human-machine (keyboard) interaction

S: Load your originals into the Document Feeder

H: Cargue los originales en la
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Example of CAT human-machine (keyboard) interaction

S: Load your originals into the Document Feeder

H: Cargue los originales en la

P: Cargue los originales en e
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Example of CAT human-machine (keyboard) interaction

S: Load your originals into the Document Feeder

H: Cargue los originales en la

P: Cargue los originales en e

H: Cargue los originales en el alimentador de originales
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Example of CAT human-machine (keyboard) interaction

S: Load your originals into the Document Feeder

H: Cargue los originales en la

P: Cargue los originales en e

H: Cargue los originales en el alimentador de originales

T: Cargue los originales en el alimentador de originales

S: Source sentence (x)
P: Current human-validated Prefix (yp)
H: System Hypothesis (ŷs)
T: Final Translation
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More examples of CAT human-machine (keyboard) interaction

S: It also contains a section to help users of previous software versions adapt
more quickly to the new software

H: Se se para ayudar a los usuarios de versiones anteriores del software a que
se a dapten más rápidamente a este nuevo software

P: T

H: También se ofrece una sección para ayudar a los usuarios de versiones
anteriores del software a que se adapten más rápidamente a este nuevo
software

P: También c

H: También contiene una sección para ayudar a los usuarios de versiones
anteriores del software a que se adapten más rápidamente a este nuevo
software

T: También contiene una sección para ayudar a los usuarios de versiones
anteriores del software a que se adapten más rápidamente a este nuevo
software
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More examples of CAT human-machine (keyboard) interaction

S: Dirección de la alimentación para tamaños de papel estándar 1-9

H: Feed direction for standard stock names 1-9

P: Feed direction for standard p

H: Feed direction for standard paper sizes 1-9

T: Feed direction for standard paper sizes 1-9

E. Vidal – ITI-UPV-DSIC January 2005 Page 10.16

Pattern Recognition Machine Translation Computer Assisted Translation

More examples of CAT human-machine (keyboard) interaction

S: Edición de la lista de impresoras

H: Editing printers

P: Editing t

H: Editing the printers

P: Editing the printer l

H: Editing the printer list

T: Editing the printer list
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Benchmark Xerox printer manuals corpus

Data English Spanish English German English French

Train Sent. pairs 56K 53K 49K
Run. words 572K 657K 543K 583K 507K 441K
Vocabulary 26K 30K 25K 27K 25K 37K

Test Sentences 1 125 984 996
Run. words 7.6K 9.4K 9.6K 10.0K 10.8K 9.8K
Out of Voc. 341 362 219 552 252 255
Run. chars. 46K 58K 55K 63K 61K 71K
Perplexity 107 60 93 169 193 135
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Benchmark EU bulletin corpus

Data English Spanish English German English French

Train Sent. pairs 214K 223K 215K
Run. words 5.9M 6.6M 6.5M 6.1M 6.0M 6.6M
Vocabulary 84K 97K 87K 152K 85K 91K

Test Sentences 800 800 800
Run. words 20K 25K 22K 21K 22K 24K
Out of Voc. 108 140 107 227 113 119
Perplexity 96 72 95 153 97 71
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CAT results with the Xerox corpus

DATA: GIATI 3-gram (1-best) GIATI 3-gram (5-best)
XRCE2 KSR CER TWER KSR CER TWER

En-Es 17.6 30.3 43.1 15.6 25.0 37.8
Es-En 21.5 35.5 51.4 18.9 28.1 45.2

En-Fr 37.1 54.3 73.8 34.3 48.5 69.6
Fr-En 39.4 55.3 71.9 36.7 49.5 67.7

En-De 38.8 62.8 81.3 35.4 56.7 77.2
De-En 36.4 61.5 78.5 32.9 55.1 73.3
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CAT results with the EU corpus

DATA: GIATI 5-gram (1-best) GIATI 5-gram (5-best)
EU KSR CER TWER KSR CER TWER

En-Es 27.5 37.6 55.8 24.6 34.8 51.7
Es-En 25.4 38.0 52.5 22.7 35.1 48.0

En-Fr 26.2 36.0 53.9 23.5 33.4 50.1
Fr-En 23.1 36.1 49.2 20.6 32.8 44.4

En-De 29.4 41.2 65.5 26.8 38.1 60.3
De-En 31.0 44.4 66.6 28.0 41.4 61.2
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Using Speech Recognition in CAT

• Early idea: a human translator dictates aloud the translation in the target
language. As the source text is known by the system, this knowledge can
be used to reduce recognition errors.

• Alternative idea within the CAT framework: the human translator determines
acceptable prefixes of the suggestions made by the system by reading (with
possible modifications) parts of these suggestions.

– A much lower degree of freedom is possible and the correspondingly lower
perplexity allows for sufficiently high recognition accuracy.

– As this is fully integrated within the CAT paradigm, the user can make use
of the conventional means (keyboard and/or mouse) to guarantee that the
produced text exhibits an adequate level of quality.
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Target language dictation in CAT

A human translator dictates the translation of a source text, x,
producing a target language acoustic sequence v.

Given v and x, the system should search for a most likely decoding of v:

ŷ = argmax
y

Pr(y | x, v)

By the assumption that Pr(v | x, y) does not depend on x,

ŷ = argmax
y

Pr(v | y) · Pr(x | y) · Pr(y)

• Pr(v | y) ≈ (TARGET LANGUAGE) ACOUSTIC MODELS

• Pr(x | y) ≈ TRANSLATION MODEL

• Pr(y) ≈ TARGET LANGUAGE MODEL

Similar to plain speech decoding, where: ŷ = argmaxy Pr(v | y) · Pr(y)
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Further use of speech recognition in CAT

Let x be the source text and yp a “correct” prefix of the target sentence.

As in pure text CAT the system suggests an optimal suffix:

ŷs = argmax
ys

Pr(ys | x, yp) (3)

The user is now allowed to utter some words, v, generally aimed at
amending parts of ŷs and the system has then to obtain a most probable
decoding of v:

d̂ = argmax
d

Pr(d | x, yp, ŷs, v) (4)

Finally, the user can enter additional amendment keystrokes k, to
produce a new consolidated prefix, yp, based on the previous yp, d̂, k
and parts of ŷs.
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Example of speech-enabled CAT human-machine interaction

Translating the source sentence “Click OK to close the print dialog” into Spanish:

ITER-0 (yp) ( )

ITER-1

(ŷs) (Haga clic para cerrar el diálogo de impresión)
(v)
(d̂) (Haga clic a )
(k) (en ACEPTAR)
(yp) (Haga clic en ACEPTAR)

ITER-2

(ŷs) (para cerrar el diálogo de impresión)
(v)
(d̂) (cerrar el cuadro)
(k) ( )
(yp) (Haga clic en ACEPTAR para cerrar el cuadro)

FINAL
(ŷs) (de diálogo de impresión)
(k) (#)

(yp ≡ y) (Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión)

System suggestions are printed in cursive, text decoded from user speech in boldface and typed text in boldface typewriter

font. In the final translation, y, text obtained from speech decoding is marked in boldface, while typed text is underlined.
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Models for speech recognition in CAT

From Eq. (4):

d̂ = argmax
d

Pr(d | x, yp, ŷs, v) = argmax
d

Pr(d | x, yp, ŷs)·Pr(v | x, yp, ŷs, d)

and, by making the assumption that Pr(v | x, yp, ŷs, d) only depends on d:

d̂ = argmax
d

Pr(d | x, yp, ŷs) · Pr(v | d)

• Pr(v | d) ≈ (TARGET LANGUAGE) ACOUSTIC MODELS

• Pr(d | x, yp, ŷs) ≈ TARGET LANGUAGE MODEL CONSTRAINED BY THE

SOURCE SENTENCE, THE PREFIX AND THE SUFFIX

Less and more restricted scenarios, depending on the latter model:

• CAT–PREF: Ignore the dependency on the system suggestion ŷs

• CAT–SEL: Restrict d to be just a prefix of ŷs
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Speech recognition in CAT: CAT–PREF

Starting from:

d̂ = argmax
d

Pr(d | x, yp, ŷs) · Pr(v | d)

a less restricted scenario arises if only the prefix yp is available; that is,
the previous system prediction ŷs is ignored and the user is assumed to
produce free target speech, only constrained to be a translation of the
source text and a continuation of the given prefix:

d̂ = argmax
d

Pr(d | x, yp) · Pr(v | d)

As compared with the dictated-translation framework, this adds the
constraint provided by the target text prefix, yp, thereby allowing for higher
speech decoding accuracy.
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Most restricted speech recognition in CAT: CAT–SEL

Starting from:

d̂ = argmax
d

Pr(d | x, yp, ŷs) · Pr(v | d)

a most restricted scenario appears if the decoding of v is constrained to
be exactly a prefix of the suffix suggested by the system, ŷs.

The uttered prefix would help the user determine an accepted part of the
system suggestion.

In this case, Pr(d | x, yp, ŷs) = Pr(d | ŷs) and the above equation can be
written as:

d̂ = argmax
d

Pr(d | ŷs) · Pr(v | d)

As compared with all the previous scenarios involving speech, here
Pr(d | ŷs) can be modeled by a very low perplexity language model, which
allows for much higher speech decoding accuracy.
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CAT speech recognition results

• SPEECH DATA: Utterances of fragments of target language sentences from
the test XEROX CORPUS (485 fragments, 10 speakers, 5,796 utterances)

• MODELS: derived form both source and target sentences of the training
XEROX corpus

• DEC and DEC-PREF used for comparison:

– DEC: Conventional speech recognition of target language utterances
(source text ignored)

– DEC-PREF: Target speech recognition constrined by the known prefix
(source text ignored)

DEC DEC-PREF CAT-PREF CAT-SEL

Word Error Rate (%) 18.6 16.1 10.6 1.6
Sentence Error rate (%) 50.2 44.4 30.0 3.6

Using knowledge about the source sentence is more
important than using only user-validated prefixes
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ABSTRACT
PingPongPlus (PP+) is a digitally enhanced version of the
classic ping-pong game. We have designed a digital layer of
audio/visual augmentation on top of a conventional ping-
pong table using a newly developed ball tracking system
and video projection. The “reactive table” displays patterns
of light and shadow as a game is played, and the rhythm
and style of play drives accompanying sound. In the
process, this project explores new ways to couple athletic
recreation and social interaction with engaging digital
enhancements. This paper describes the basic idea, research
agenda, several applications, technical implementation, and
initial experiences.

Keywords
augmented reality, reactive surface, athletic / kinesthetic
interaction, computer-supported collaborative play,
interactive media art.

INTRODUCTION
Computer-Supported Collaborative Play can take many
forms. It runs the technical gamut from highly sophisticated
networked video games to electronic board games. Most of
the work in today’s digital multiplayer games has lost the
element of the physical presence of people and their
kinesthetic interactions. We are interested in designing
systems for collaborative play that push the physical world
back into the forefront of design, without relying on simple
GUI controllers (such as a mouse, keyboard, or joystick)
[1]. Rather, in our model of collaboration, more emphasis is
placed on the physicality of the people involved. We
believe that a person’s physical prowess, and sense of
kinesthesia, can be leveraged to strengthen the quality of
collaborative play. To do this, we have investigated new
ways to interact with a surface and to sense activity. We
seek to examine some of the ways digital augmentations can
change traditional, physically-based game play and allow
new interfaces with the digital world.

PINGPONGPLUS
PingPongPlus is a digitally enhanced ping pong game using
a "reactive table" that incorporates sensing, sound, and
projection technologies. The table displays patterns of light

and shadow as a game is
played, and the rhythm and
style of play drives
accompanying sound. For
example, in one mode, a
bouncing ball leaves images of

rippling water (Fig. 1).

Technical Overview
PingPongPlus consists of
two main elements: a ball-
tracking system, and a
graphics projection
system (Fig. 2).

The ball position sensing
is done solely through
sound. When a ball hits,
the sound travels
through the table. Eight
microphones mounted
on the underside of the
table pick up the sound. When a microphone detects a hit, a
time value is assigned to that microphone, and sent to a
computer through a custom made electronic circuit. The
time values are evaluated on a 200 MHz PC by an
algorithm that determines the location of the hit. The
algorithm we have developed can pinpoint the ball’s
position within a few inches in a matter of milliseconds,
which is good enough for our application.

The graphics are created in accordance with the ball
tracking information. They are written in Visual C++ with a
custom-made graphics package. A projector suspended 20
ft. above the table displays the graphics on to its surface.

APPLICATIONS
Over 12 different applications have been developed and
tested on the table. Five of the applications are discussed
here. Through laboratory sponsor meetings, demonstrations,
and exhibitions, hundreds of people have played with PP+,
and their feedback was reflected in our iterative design.

Permission to make digital/hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copyright is by permission of th ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires
specific permission and/or a fee.

CHI ’97, Atlanta GA USA
Copyright 1997 ACM 0-89791-802-9/97/03  ..$3.50

Fig.2. System configuration of
PingPongPlus

   Fig. 1. Water Ripple
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Water Ripple
The Water Ripple is a simple, causal augmentation. When a
ball hits the table, an image of a water ripple flows out from
the spot the ball landed (Fig. 1). Players found this to be
one of the less distracting applications from the normal
game of ping-pong, allowing them to concentrate on the
game at hand, yet augmenting the game in a non-traditional
sense. People often played with curiosity, rather than
competitiveness, trying to examine what kinds of
interference wave patterns they could create and view on
the table.  One child even climbed up on the table and
created water ripples with his foot, rather than a ball.

Thunderstorm
The Thunderstorm application incorporates game logic into
its structure. By keeping the ball in play, rallying back and
forth, the players “build up a thunderstorm.” At the
beginning of a point, only calm, flowing waves appear on
the table (Fig. 3). As the rally duration increases, the sound
of a heartbeat gets faster, wind whips around the sound
space, and the waves speed up. If the ball is kept in play for
a long time, lightning bolts shoot from one side of the table
to the other, connecting the ball’s last two locations. In this
mode, we found that the style of game, the way people play,
is changed due to the additional effects. When the wind
picks up and the heartbeat gets faster, players tend to hit the
ball faster and harder.

Black-Out
With the Black-Out mode, we experimented with how
augmentation can change strategies employed in a game.
This mode is intended to be played in a completely dark
room, where the only light comes from the bright white
projection on the table. In this mode, a large black spot
appears wherever the ball hits, effectively “taking light
away” from the other person’s side of the table (Fig. 4). By
concentrating hits in a single area, all the opponent’s light
can be taken away in that space. The removal of light can
be used strategically.

Painting
This application explores the collaborative possibilities of
the project. One side of the table is a blank canvas, and the
other is a collection of two colors of “ink”. When a ball hits
the black area of the “ink,” it leaves a black spot on the
canvas (Fig. 5). Accordingly, when it hits the white “ink,” it
leaves a white spot on the canvas side of the table. Through
collaboration on color choices and placements by expert
players, an interactive artwork can be made on the canvas.
There is a shift here, from normal ping-pong to a different
kind of collaborative game. The object is not to win a game,
but it is to collaboratively create an image. This shows how
augmentation can not only change the nature of game play,
but it can change the object of the game itself.

Comets
The Comets application continues to change the object of
the game. In this mode, when a ball hits the table, it

“releases a comet” which travels up towards the net (Fig 6).
When the comet hits the net, it creates a sound that is
mapped to the place on the table the comet originated from.
Experts using this mode could potentially use PP+ to
creating music, or at least an interesting sound sculpture.

DISCUSSION
We have been exploring a design space along the axis of
competition-collaboration and augmentation-
transformation. The more subtle augmentation of the Water
Ripple mode does not change the basic nature of ping-pong
play very much.  In contrast, Black-Out provides players
with new strategies to win a game.  The Painting mode
gives a new collaborative goal where players have tried to
coordinate their play to paint on a “canvas” table.

Fig. 7 illustrates our design axis of augmentation-
transformation and sample applications.
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Fig. 7. Design space of PingPongPlus project

CONCLUSION
We expect PingPongPlus will suggest new directions to
couple athletic recreation and social interaction with
engaging digital enhancements. By augmentation and
transformation of physically-based games, new, engaging
games can be developed in the physical/digital world.
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ABSTRACT
This paper introduces a novel interface for digitally-
augmented cooperative play. We present the concept of the
"athletic-tangible interface," a new class of interaction which
uses tangible objects and full-body motion in physical
spaces with digital augmentation. We detail the
implementation of PingPongPlus, a "reactive ping-pong
table", which features a novel sound-based ball tracking
technology. The game is augmented and transformed with
dynamic graphics and sound, determined by the position of
impact, and the rhythm and style of play. A variety of
different modes of play and initial experiences with
PingPongPlus are also described.

Keywords
tangible interface, enhanced reality, augmented reality,
interactive surface, athletic interaction, kinesthetic
interaction, computer-supported cooperative play.

INTRODUCTION
When an expert plays ping-pong, a well-used paddle
becomes transparent, and allows a player to concentrate on
the task – playing ping-pong. The good fit of grasp is vital
to making a paddle transparent [10].  To achieve a "good
fit," a user has to choose a paddle of the right size, right
form, and right weight for his or her hand and style of play.
To achieve a "better fit," the user has to customize the tool
by scraping the edge of the paddle with a knife and
sandpaper.  The "best fit" is, however, achieved by using a
paddle over a long period of time.
Figure 1 shows the author's paddle and the traces of the
body left on it [4].  After twenty years of use, the grip of the
paddle has captured the traces of his right hand (marks of
the thumb and index finger in front and marks of the middle
finger on back). The right-bottom picture shows the dent
made on the back of the paddle by a strong grasp with the
tip of the middle finger.
The ping-pong paddle, which can co-evolve with a user by
changing its physical form and being united with the
human hand, suggests an important direction for HCI –
transparent physical extensions of our body and mind into
both physical and digital worlds.

Moreover, the full-body motion, speed, and rhythm of a
ping-pong game make the interaction very engaging and
entertaining.  Kinesthesia is one of the keys of what makes
ping-pong enjoyable.
Modern graphical user interface (GUI) technologies provide
very limited, generic physical forms (e.g. mouse, keyboard,
and monitor) and allow limited physical motions (only
clicking and typing).  Thus, the GUI is difficult to adapt to
human bodies and to take advantage of kinesthesia.

Goals of the PingPongPlus Project
We have designed PingPongPlus on top of the classic
game of ping-pong [21].  Its goals are:
1. to demonstrate an instance of an athletic-tangible

interface, developed on top of existing skills and
protocols of familiar competitive/cooperative play.

2. to develop an underlying technology for an "interactive
architectural surface" which can track the activities
happening on the surface.

3. to study the impact of digital augmentation on the
competitive/cooperative nature of play.

COMPUTER-SUPPORTED COOPERATIVE PLAY
Sport is an activity governed by a set of rules or customs
that involves skill and physical exertion. It is often

Figure 1 Traces of grasping hand left on the well-used 
ping-pong paddle

front back
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undertaken competitively against opponents, while it is
played cooperatively within a team.  By playing sports,
people can not only learn athletic skills and develop
physical strength, but they can also develop social
communication and coordination skills.
Computer support is gradually embedding itself in, and
transforming the way we play sports and games.
Traditional computer games are now extending their reach
out from the sole domain of the keyboard, mouse, joystick,
and twitch-controllers [8]. Children can create and teach
robots, interact with their dolls, and experience complex
skiing and motorcycle simulators. With the rise of
networks, in the home and in the arcade, play can occur
cooperatively more than ever before.
We may give a generic label “CSCP” (Computer-
Supported Cooperative Play) to uses of computer
technology that enhance physical exertion, social
interaction, and entertainment in sport and play. Our
research interests in CSCP encompass both the
augmentation and transformation of sports and games. We
expect that CSCP research will guide us to design a new
form of HCI that we call the “athletic-tangible interface.”
This refers to a new class of interaction that uses tangible
objects and full-body motion in physical spaces with
digital augmentation. We believe that a person’s physical
prowess and sense of kinesthesia can be leveraged to
strengthen the quality of a collaborative play experience in
physical/digital domain.
Our athletic-tangible interface research looks at
augmentation and transformation of real sports and games,
rather than partial simulations of them. Arcade simulation
games, while moving in very promising physically-based
directions, can only imitate portions of real experience.
Immersive virtual environments, such as VIDEOPLACE
[7] and ALIVE [9], allow users to use unencumbered full
body motion.  Although these systems are engaging, they
are designed to provide only a simulated experience and the
interaction is limited to simple gesturing.
We see the opportunity to explore the design of new games
and play experiences where physical interaction is of central
importance. We have begun to explore this by adding
digital layers of graphics and sound on top of existing
skills and protocols of classic games.

DESIGN OF P INGP ONGP LUS
We have chosen ping-pong as a target sport of our athletic-
tangible interface research, and have designed a computer-
augmented version called "PingPongPlus." PingPongPlus
is a digitally enhanced ping-pong game using a "reactive
table" that incorporates sensing, sound, and projection
technologies. The table displays graphics patterns as a
game is played, and the rhythm and style of play drives
accompanying sound.
Figure 2 shows a snapshot of PingPongPlus in the water
ripples mode, and Figure 3 shows the system architecture
of PingPongPlus. In the water ripples mode, a bouncing
ball leaves images and the sound of rippling water.

A series of "tangible interfaces" have been created which
give physical form to online digital information [3, 5, 16].
In these projects, users can directly grasp and manipulate
digital information by coupling graspable objects and
online digital information. We have also demonstrated the
concept of an interactive surface that can sense and track
the graspable objects on it and project digital shadows [15,
17].
In PingPongPlus, we are extending this notion of tangible
interfaces by integrating the kinesthesia of athletic
interaction. With PingPongPlus, users experience dynamic
and athletic interactions using the full-body in motion, a
paddle in hand, a flying ball, and a reactive table.
PingPongPlus requires sophisticated realtime coordination
among the body, paddle, ball, and digital effects of graphics
and sound.

IMPELMENTATION TECHNOLOGY
The PingPongPlus system consists of ball-tracking
hardware, software algorithms for ball-hit location
detection, and a graphics projection system. The
technology behind creating “interactive surfaces” is of

Figure 3 System architecture of PingPongPlus

8 microphones beneath the table

video
projector

ball 
tracking 
electronics

computer
(300 MHz 
Pentium®)

Figure 2 PingPongPlus in water ripples mode
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utmost importance to this system, and is further described
here.

Ball Tracking System
We have developed a sound-based ball tracking system.
When a ball hits, the sound travels through the table at
roughly twice its speed in air. Eight microphones mounted
on the underside of the table pick up the sound. When a
microphone detects a hit, a time value is assigned to that
microphone, and it is sent to a computer through a custom-
made electronic circuit. The time values are evaluated on a
300 MHz PC by an algorithm that determines the location
of the hit. The algorithm we have developed can pinpoint
the ball’s position within a few inches in a matter of
milliseconds, which is good enough for our application.
Figure 4 shows a schematic diagram of a ball hit. The four
microphones (m1, m2, m3, and m4) on the underside of
each table top pick up the ball hit sound at different times
(t1, t2, t3, and t4). Given this information, there are a few
different algorithms that can determine the original location
of a ball hit. We implemented two different methods along
with the necessary hardware.

Hardware Implementation
A custom-built hardware circuit connects the ping-pong
table to the computer via the serial port (Fig. 5). This
circuit only outputs a microphone number (m1, m2, m3, or
m4) along with its associated time value (t1, t2, t3, t4).
Software running on a host PC does the rest of the work.
The hardware is realized by doing peak thresholding on
signals from the microphones. The microphones
themselves are electret pickups, which output a voltage
around 0.25 volts for a typical hit. First, their signal is
passed through an op-amp which increases their gain by a
factor of 20, such that there is a signal between 0 and 5
volts, quiescently at 2.5 volts. This signal is sent through
two comparators and an or-gate that compare the signal's
absolute value (relative to the 2.5 volt center) against a
threshold voltage (both high and low). The comparator/or-
gate pair returns true to a PIC chip if there is an impact.
This PIC chip is running at 20 MHz, and polls its input
about 100,000 times a second. If there is a hit, the PIC
chip assigns a time value to that microphone input, and
sends this information out a serial connection. Fig. 6
shows a photo and a block diagram of the electronic circuit.
Including the microphones, the total cost for this hardware
is nominal. A future improvement to this system is to
implement peak detection and to match the various
incoming waveforms (as opposed to simple thresholding)
to more accurately determine the time differences, and
perhaps enable us to extract impact characteristics. It is
expected that this will produce significant gains in accuracy
and reliability.

Software Algorithms for Location Detection
Given the hit timing information from the hardware, the
software can calculate a ball-hit coordinate in a number of
different ways.
The first algorithm we implemented is by a direct
inspection of the time differences. If the ball lands directly

at a midpoint between two microphones, the time
differences between the two points will be the same (t1 =
t2, for instance), and you can infer that the ball landed on a
straight line equidistant from those points. If the ball lands
closer to one microphone than another, it can be inferred
that the ball landed on a hyperbolic shaped curve between
the two points.
The time differences between many microphones can be
compared, which results in a system of hyperbolas that

m#: microphones

m1

m2

m3

m4

t1

t2 t4

t3

t0

Figure 4  Ball tracking algorithms
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Figure 5    Ball tracking electronic circuit
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intersect at different  points. This system of equations can
be solved to yield these points. By throwing out
intersection points that do not occur on the table, and
looking at which points have the largest number of
intersecting hyperbolas, a very good approximation of the
original hit location can be made. This method is efficient,
as no calibration whatsoever is required.
This algorithm, however, has drawbacks. First, it requires
solving equations for two variables that go out to infinity.
This is computationally expensive. Second, this method is
sometimes not accurate. Sometimes there might be
multiple intersection points, or possibly, no points at all.
In these cases, a best guess must be made based on the
data, and the system is fairly prone to error.
While hyperbolic locator algorithms have been further
refined in the literature (e.g. [2]), we have developed a
much simpler algorithm to calculate the ball hit position
that is better suited to this application.  This method is
based on a comparison of the time-difference data to a set of
model parameters that are acquired by a linear least-squares
fit of calibration/training data. The model for this method
is:

AX = Y
Where:
  Y = the ball landing coordinate vector (x,y)
  X = sensor data vector (time differences information)
  A = model parameters (matrix obtained by linear least-

squares fit)
When an impact occurs, the sensor values, X, are
multiplied by the model parameters, A, which returns a
ball landing coordinate, Y. Matrix A, the model
parameters, is set through a calibration routine. This
calibration routine, however, only needs to be performed
once in the life of the table, unless the microphone
placement is changed.
Training data is acquired by dropping a ping-pong ball on
certain known spots on the table a number of times. In our
case, we chose to calibrate the table with 18 distinct points;
the A matrix was then calculated through a least-squares fit
to this data [14].
Although it involves a linear approximation to hyperbolic
relation, this method works well here for a variety of
reasons. Since it is a simple matrix multiplication, it is
very fast. Also, the linear least-squares fit error metric in the
creation of the model parameters makes the system
somewhat adaptive to imperfect tables. Performance does
not degrade as drastically around edges as compared to the
first algorithm (This is important, as most hard surfaces
have different kinds of edge effects.).  Using this method
makes the sensing system more portable to other kinds of
tables and surfaces. Although the linear approximation
introduces some distortion, it provided accuracy on the
order of a few inches, while being fast enough to appear
perceptually instant.
At the early stage of this PingPongPlus project, we
evaluated the use of computer vision technology for ball

tracking, but we concluded that it was slower, more
complicated, and computationally more expensive than
sound-based tracking technology.  Computer-vision,
however, is attractive because the system can capture not
only the ball but also the motion of players with paddles.
Computer vision could be a reasonable and more
interesting alternative technology when the computation
speed becomes fast enough and the price drops.

Creation and Projection of Graphics
The graphics are created in accordance with the ball
tracking information. They are written in Visual C++ with
a custom-made graphics package. In the following
APPLICATION section, we describe several patterns of
graphics we have developed.
A projector suspended 20 ft. above the table displays the
graphics on to its surface.   We used a Mitsubishi LCD
projector LVP-G1A for the experiments, but the brightness
of this projector was not enough.  To see the graphics on
the surface of ping-pong table, we had to darken the room,
making it difficult for human eyes to track the ball.  We
expect the next generation of brighter video projection
technology and, potentially, "e-ink" technology [6] to
resolve this problem.
In order to make the graphics less "pixelated," we out-
focused the video projector slightly so that the image
became softer and naturally merged into a wooden table
surface.

APPLICATIONS
We have designed and implemented over a dozen different
application modes on the PingPongPlus table.  The goal of
our application design was to explore the design space
characterized by the two axes: 1) augmentation vs.
transformation, and 2) competition vs. collaboration.
We had two phases of application development.
Phase 1: 1997  Summer-Fall

Artistic and collaborative play modes: water ripples,
thunderstorm, spots, painting, comets, etc.

Phase 2: 1998  Spring-Summer

An enhanced artistic mode (school of fish) and a new
competitive game mode (Pac-Man®).

PingPongPlus was demonstrated from October 1997 until
July 1998 at the MIT Media Lab to the faculty, students,
and sponsors. In July 1998, PingPongPlus was exhibited
at SIGGRAPH ’98 Enhanced Realities in Orlando [20].
Although we have not yet conducted formal experiments to
evaluate those applications, informal feedback from casual
users was reflected in the iterative design of these
applications.  In this section, we illustrate and discuss
seven examples of those applications.

Water Ripples mode
The Water Ripple  mode is a simple, causal augmentation.
When a ball hits the table, an image of a water ripple flows
out from the spot the ball landed (Fig. 2). Players found
this to be one of the less distracting applications from the
normal game of ping-pong, allowing them to concentrate
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on the game at hand, yet augmenting the game in a non-
traditional sense. People often played with curiosity, rather
than competitiveness, trying to examine what kinds of
interference wave patterns they could create on the table.
Once a child even climbed up on the table and created water
ripple with his foot.  When a player makes an error by
hitting a ball into the net, it is usually disappointing.
However, in water ripples mode, it turns into an
opportunity to enjoy a sequence of small water ripples
making a beautiful pattern of interference and sound.

Spots mode
The Spots mode was originally intended to be played in a
completely dark room where the only light source is the
bright white projection on the table. In this mode, a large
black spot appears wherever the ball hits, effectively
“taking light away” from the other person’s side of the
table (Fig. 6). The removal of light can be used
strategically, changing the strategies employed in a game.

Painting mode
The Painting mode was derived from spots mode.  The
Painting mode was designed to explore the collaborative
aspects of PingPongPlus.  In Painting mode, one side of
the table is a blank canvas, and the other is a black and
white "ink" pallet. When a ball hits the black area of the
“ink,” it leaves a black spot on the canvas (Fig. 7).
Accordingly, when it hits the white “ink,” it leaves a white
spot on the canvas side of the table. Through collaboration
on color choices and placements by expert players, an
interactive artwork can be made on the canvas. There is a
shift here away from normal ping-pong to a collaborative
painting game. The object is not to win a game, but to
create an image. This suggests digital augmentation can
not only change the nature of the game, but also change the
object of the game itself.
In practice, however, the precise control of the ball is too
difficult for most users.  They could not succeed in painting
what they intended.  Rather than coordinating the ball
movement to create images, they simply enjoy painting
visual effects.  This motivated us to design the Comets
mode.

Comets mode
In the Comets mode, when a ball hits the table, it "releases
a comet" which travels up towards the net (Fig 8). When
the comet hits the net, it creates a sound that is mapped to
the place on the table from which the comet originated.
Experts using this mode could potentially use
PingPongPlus to create/play music. We are planning to
further explore the integration of playing music and ping-
pong by using the speed of play as a metronome that
controls the tempo of music being played.

Thunderstorm mode
The Thunderstorm mode was designed to encourage
collaboration by continuing to rally rather than scoring
points. By keeping the ball in play, rallying back and forth,
players “build up a thunderstorm.” At the beginning of a
point, calm, flowing waves appear on the table (Fig. 9 top).
As the rally duration increases, a sound of a heartbeat in the
background gets faster, wind whips around the sound space,
and waves speed up. If the ball is kept in play for a long
time, lightning bolts shoot from one side of the table to the
other, connecting the ball’s last two locations (Fig. 9
bottom).
In this mode, we found that the way people play is changed
due to the additional effects of the thunderstorm. When the
wind picks up and the heartbeat gets faster, players tend to
be more nervous and hit the ball faster and harder. Players
try to rally until they see the lightning.  The lightning at
the end of a long rally encourages players to cooperate.

Pac-Man® mode
In Pac-Man® mode, the Namco classic video game is
reinterpreted for the PingPongPlus environment (Fig. 10).
The ball serves the same functions as Pac-Man® did in the
video game; it is controllable by the players and results in
the scoring of points, which is the goal of the game. Points
are awarded for accuracy in hitting the various fruit targets,
and points are taken away for hitting the ghosts.

Figure 6    Spots mode

Figure 7   Painting mode
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Figure 8   Comets mode

Figure 9   Thunderstorm mode
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Figure 10  Pac-Man® mode
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We designed this Pac-Man mode to see if we could
transform ping-pong into a very different engaging,
competitive game. However, it was found that it was
difficult to divide visual attention between tracking a ball
and watching the Pac-Man screen on a table. This indicates
that highly detailed display elements on the table do not
work as well as simple visual patterns. The best results
seem to occur when a simple visual pattern is combined
with some level of complexity to keep the game
interesting. The School of Fish mode is a good example of
this concept.

School of Fish mode
The school of fish with water ripples seemed to be the most
popular mode for players. In this mode, a school of fish
swims on the table (Fig. 11) following a behavior pattern
set forth from the algorithms that Craig Reynolds
developed for flock behavior [12]. (Top three pictures are
the images from a computer screen, and the bottom picture
is a picture from the installation.) The ball causes a splash
and a ripple in the “water” where it hits, scaring the fish. In
time, the fish, following their individual behavior models,
school back together. The simplicity of the visual display,
combined with the complexity of the emergent activity
from a behavior model made this mode continually
compelling, even after days of play.

Figure 11   School of fish and water ripples mode

computer 
screen 
shots
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DISCUSSION AND FUTURE WORK
Through the PingPongPlus project, we intended to explore
a design space that can be characterized by two axes:
augmentation vs. transformation, and competition vs.
collaboration. Figure 13 illustrates the seven applications
plotted in this 2D design space based on our intention and
experiences.  
Originally ping-pong is a competitive game, and modes
such as water ripples and spots did not change the basic
nature of ping-pong play very much; it was still primarily a
competitive game.
In contrast, Comets, Painting and Thunderstorm modes
added new collaborative goals.  For example,
Thunderstorm and Comets encouraged players to keep
playing to see the lightning effects  or to hear the music of
the comets. The Painting mode was intended to encourage
coordination to paint on a "canvas" table.
Pac-Man® was intended to test the transformation of the
game into another competitive game. Originally, we
expected that the experienced players could place the ball
accurately to score points. This assumption proved to be
false, showing that careful design is needed in “target”
games.

School of Fish mode was most successful in keeping the
attention of both players, and those watching around the
table.  Even when no one was playing, people enjoyed
watching fish swim in a virtual pond.
Although we have focused on the transformation  of
interaction in this paper, we see promising applications in
the augmentation of players' performance.  We plan to
design a ping-pong expert training system using
PingPongPlus.
Besides new modes tailored for the PingPongPlus table,
there exist a number of extensions that can be made in the
realm of interactive surfaces. Interactive surfaces absorb
information from the physical world, move it into a digital
world, process it, and then radiate the results back to a
physical world.  This is one of the key concepts of the
Tangible Bits vision [5]. We plan to use the
PingPongPlus sensing system in conjunction with various
new wireless sensor technologies to extend the application
domain of interactive surfaces.

RELATED WORK
Research in Augmented Reality [1, 19] and Ubiquitous
Computing [18] stimulated this work. VIDEOPLACE [7],
ALIVE [9], and many other computer-vision based
interactive systems have been developed that allow people
to use human body motion as a means of interacting with
the digital world using vision tracking techniques.
There are also a variety of virtual reality (VR) systems [7,
13] which enable people to interact with computational 3D
space using a HMD (head-mounted display) and a data
glove. AR2 Hockey (Augmented Reality AiR Hockey) [11]
is a good example of a mixed-reality (MR) system for
digitally augmented competitive multi-user games.  The
players of AR2 Hockey use physical mallets to hit a virtual
puck with a see-through head-mounted display.

CONCLUSION
We have presented the concept of the athletic-tangible
interface through the example of PingPongPlus, an
augmented ping-pong table.  We developed new sound-
based ball tracking technology that is robust and
inexpensive.  Through experiments with various
application modes, we explored the design space of
interactions with special focus on two axes: augmentation
vs. transformation and competition vs. collaboration.  

Figure 12   PingPongPlus in use
(SIGGRAPH ‘98, Enhanced Reality)

Figure 13   Design Space of PingPongPlus Applications
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We expect PingPongPlus to suggest new directions to
integrate athletic recreation and social interaction with
engaging digital enhancements. By the augmentation and
transformation of physical games, new, engaging
interactions can be developed in the physical/digital world.
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